If it's worth saying, but not worth its own post, then it goes here.
Notes for future OT posters:
1. Please add the 'open_thread' tag.
2. Check if there is an active Open Thread before posting a new one. (Immediately before; refresh the list-of-threads page before posting.)
3. Open Threads should start on Monday, and end on Sunday.
4. Unflag the two options "Notify me of new top-level comments on this article" and "
I'm pretty sure arbitrarily large squares are possible. Here's an argument that assumes primes behave like random numbers, which is often okay to assume. By the prime number theorem, the chance that an N-digit number is prime is proportional to 1/N. So the chance that N^2 random digits arranged in a square will form 2N primes (N rows and N columns) is about 1/N^(2N). But the number of ways to select N^2 digits is 10^(N^2) which easily overwhelms that.
The bottom and the rightmost prime can both have only odd digits without 5. The probability for each prime to fit there is then only (2/5)^N times that. We can't see them as independent random numbers.