Seth Herd

Message me here or at seth dot herd at gmail dot com.

I was a researcher in cognitive psychology and cognitive neuroscience for about two decades. I studied complex human thought using neural network models of brain function. Now I'm applying what I've learned to the study of AI alignment. 

Research overview:

Alignment is the study of how to give AIs goals or values aligned with ours, so we're not in competition with our own creations. Recent breakthroughs in AI like ChatGPT make it possible we'll have smarter-than-human AIs soon. So we'd better get ready. If their goals don't align well enough with ours, they'll probably outsmart us and get their way — and treat us as we do ants or monkeys. See this excellent intro video for more. 

There are good and deep reasons to think that aligning AI will be very hard. But I think we have promising solutions that bypass most of those difficulties, and could be relatively easy to use for the types of AGI we're most likely to develop first. 

That doesn't mean I think building AGI is safe. Humans often screw up complex projects, particularly on the first try, and we won't get many tries. If it were up to me I'd Shut It All Down, but I don't see how we could get all of humanity to stop building AGI. So I focus on finding alignment solutions for the types of AGI people are building.

In brief I think we can probably build and align language model agents (or language model cognitive architectures) even when they're more autonomous and competent than humans. We'd use a stacking suite of alignment methods that can mostly or entirely avoid using RL for alignment, and achieve corrigibility (human-in-the-loop error correction) by having a central goal of following instructions. This scenario leaves multiple humans in charge of ASIs, creating some dangerous dynamics, but those problems might be navigated, too. 

Bio

I did computational cognitive neuroscience research from getting my PhD in 2006 until the end of 2022. I've worked on computational theories of vision, executive function, episodic memory, and decision-making, using neural network models of brain function to integrate data across levels of analysis from psychological down to molecular mechanisms of learning in neurons, and everything in between. I've focused on the interactions between different brain neural networks that are needed to explain complex thought. Here's a list of my publications. 

I was increasingly concerned with AGI applications of the research, and reluctant to publish my full theories lest they be used to accelerate AI progress. I'm incredibly excited to now be working directly on alignment, currently as a research fellow at the Astera Institute.  

More on approach

The field of AGI alignment is "pre-paradigmatic." So I spend a lot of my time thinking about what problems need to be solved, and how we should go about solving them. Solving the wrong problems seems like a waste of time we can't afford.

When LLMs suddenly started looking intelligent and useful, I noted that applying cognitive neuroscience ideas to them might well enable them to reach AGI and soon ASI levels. Current LLMs are like humans with no episodic memory for their experiences, and very little executive function for planning and goal-directed self-control. Adding those cognitive systems to LLMs can make them into cognitive architectures with all of humans' cognitive capacities - a "real" artificial general intelligence that will soon be able to outsmart humans. 

My work since then has convinced me that we could probably also align such an AGI so that it stays aligned even if it grows much smarter than we are.  Instead of trying to give it a definition of ethics it can't misunderstand or re-interpret (value alignment mis-specification), we'll do the obvious thing: design it to follow instructions. It's counter-intuitive to imagine an intelligent entity that wants nothing more than to follow instructions, but there's no logical reason this can't be done.  An instruction-following proto-AGI can be instructed to act as a helpful collaborator in keeping it aligned as it grows smarter.

I increasingly suspect we should be actively working to build such intelligences. It seems like our our best hope of survival, since I don't see how we can convince the whole world to pause AGI efforts, and other routes to AGI seem much harder to align since they won't "think" in English. Thus far, I haven't been able to engage enough careful critique of my ideas to know if this is wishful thinking, so I haven't embarked on actually helping develop language model cognitive architectures.

Even though these approaches are pretty straightforward, they'd have to be implemented carefully. Humans often get things wrong on their first try at a complex project. So my p(doom) estimate of our long-term survival as a species is in the 50% range, too complex to call. That's despite having a pretty good mix of relevant knowledge and having spent a lot of time working through various scenarios. So I think anyone with a very high or very low estimate is overestimating their certainty.

Comments

Sorted by

The important thing for alignment work isn't the median prediction; if we had an alignment solution just by then, we'd have a 50% chance of dying from that lack.

I think the biggest takeaway is that nobody has a very precise and reliable prediction, so if we want to have good alignment plans in advance of AGI, we'd better get cracking.

I think Daniel's estimate does include a pretty specific and plausible model of a path to AGI, so I take his the most seriously. My model of possible AGI architectures requires even less compute than his, but I think the Hofstadter principle applies to AGI development if not compute progress.

Estimates in the absence of gears-level models of AGI seem much more uncertain, which might be why Ajeya and Ege's have much wider distributions.

Great analysis. I'm impressed by how thoroughly you've thought this through in the last week or so. I hadn't gotten as far. I concur with your projected timeline, including the difficulty of putting time units onto it. Of course, we'll probably both be wrong in important ways, but I think it's important to at least try to do semi-accurate prediction if we want to be useful.

I have only one substantive addition to your projected timeline, but I think it's important for the alignment implications.

LLM-bots are inherently easy to align. At least for surface-level alignment. You can tell them "make me a lot of money selling shoes, but also make the world a better place" and they will try to do both. Yes, there are still tons of ways this can go off the rails. It doesn't solve outer alignment or alignment stability, for a start. But GPT4's ability to balance several goals, including ethical ones, and to reason about ethics, is impressive.[1] You can easily make agents that both try to make money, and thinks about not harming people.

In short, the fact that you can do this is going to seep into the public consciousness, and we may see regulations and will definitely see social pressure to do this.

I think the agent disasters you describe will occur, but they will happen to people that don't put safeguards into their bots, like "track how much of my money you're spending and stop if it hits $X and check with me". When agent disasters affect other people, the media will blow it sky high, and everyone will say "why the hell didn't you have your bot worry about wrecking things for others?". Those who do put additional ethical goals into their agents will crow about it. There will be pressure to conform and run safe bots. As bot disasters get more clever, people will take more seriously the big bot disaster.

Will all of that matter? I don't know. But predicting the social and economic backdrop for alignment work is worth trying.

Edit: I finished my own followup post on the topic, Capabilities and alignment of LLM cognitive architectures. It's a cognitive psychology/neuroscience perspective on why these things might work better, faster than you'd intuitively think. Improvements to the executive function (outer script code) and episodic memory (pinecone or other vector search over saved text files) will interact so that improvements in each make the rest of system work better and easier to improve.

 

 

  1. ^

    I did a little informal testing of asking for responses in hypothetical situations where ethical and financial goals collide, and it did a remarkably good job, including coming up with win/win solutions that would've taken me a while to come up with. It looked like the ethical/capitalist reasoning of a pretty intelligent person; but also a fairly ethical one.

I think you're absolutely right.

And I think there's approximately a 0% chance humanity will stop at pure language models, or even stop at o1 and o3, which very likely to use RL to dramatically enhance capabilities.

Because they use RL not to accomplish things-in-the-world but to arrive at correct answers to questions they're posed, the concerns you express (and pretty much anyone who's been paying attention to AGI risks agrees with) are not fully in play.

Open AI will continue on this path unless legislation stops them. And that's highly unlikely to happen, because the argument against is just not strong enough to convince the public or legislators.

We are mostly applying optimization pressure to our AGI systems to follow instructions and produce correct answers. Framed that way, it sounds like it's as safe an approach as you could come up with for network-based AGI. I'm not saying it's safe, but I am saying it's hard to be sure it's not without more detailed arguments and analysis. Which is what I'm trying to do in my work.

Also as you say, it would be far safer to not make these things into agents. But the ease of doing so with a smart enough model and a prompt like "continue pursuing goal X using tools Y as appropriate to gather information and take actions" ensures that they will be turned into agents.

People want a system that actually does their work, not one that just tells them what to do. So they're going to make agents out of smart LLMs. This won't be stopped even with legislation; people will do it illegally or from jurisdictions that haven't passed the laws.

So we are going to have to both hope and plan for this approach, including RL for correct answers, is safe enough. Or come up with way stronger and more convincing arguments for why it won't. I currently think it can be made safe in a realistic way with no major policy or research direction change. But I just don't know, because I haven't gotten enough people to engage deeply enough with the real difficulties and likely approaches.

That's what would happen, and the fact that nobody wanted it to happen wouldn't help. It's a Tragedy of the Commons situation.

I very much agree. Do we really think we're going to track a human-level AGI let alone a superintelligence's every thought, and do it in ways it can't dodge if it decides to?

I strongly support mechinterp as a lie detector, and it would be nice to have more as long as we don't use that and control methods to replace actual alignment work and careful thinking. The amount of effort going into interp relative to the theory of impact seems a bit strange to me.

For politicians, yes - but the new administration looks to be strongly pro-tech (unless DJ Trump gets a bee in his bonnet and turns dramatically anti-Musk).

For the national security apparatus, the second seems more in line with how they get things done. And I expect them to twig to the dramatic implications much faster than the politicians do. In this case, there's not even anything illegal or difficult about just having some liasons at OAI and an informal request to have them present in any important meetings.

At this point I'd be surprised to see meaningful legislation slowing AI/AGI progress in the US, because the "we're racing China" narrative is so compelling - particularly to the good old military-industrial complex, but also to people at large.

Slowing down might be handing the race to China, or at least a near-tie.

I am becoming more sure that would beat going full-speed without a solid alignment plan. Despite my complete failure to interest anyone in the question of Who is Xi Jinping? in terms of how he or his successors would use AGI. I don't think he's sociopathic/sadistic enough to create worse x-risks or s-risks than rushing to AGI does. But I don't know.

Thank you. Oddly, I am less altruistic than many EA/LWers. They routinely blow me away.

I can only maintain even that much altruism because I think there's a very good chance that the future could be very, very good for a truly vast number of humans and conscious AGIs. I don't think it's that likely that we get a perpetual boot-on-face situation. I think only about 1% of humans are so sociopathic AND sadistic in combination that they wouldn't eventually let their tiny sliver of empathy cause them to use their nearly-unlimited power to make life good for people. They wouldn't risk giving up control, just share enough to be hailed as a benevolent hero instead of merely god-emperor for eternity.

I have done a little "metta" meditation to expand my circle of empathy. I think it makes me happy; I can "borrow joy". The side effect is weird decisions like letting my family suffer so that more strangers can flourish in a future I probably won't see.

I also expect government control; see If we solve alignment, do we die anyway? for musings about the risks thereof. But it is a possible partial solution to job loss. It's a lot tougher to pass a law saying "no one can make this promising new technology even though it will vastly increase economic productivity" than to just show up to one company and say "heeeey so we couldn't help but notice you guys are building something that will utterly shift the balance of power in the world.... can we just, you know, sit in and hear what you're doing with it and maybe kibbitz a bit?" Then nationalize it officially if and when that seems necessary.

It's not really dangerous real AGI yet. But it will be soon this is a version that's like a human with severe brain damage to the frontal lobes that provide agency and self-management, and the temporal lobe, which does episodic memory and therefore continuous, self-directed learning.

Those things are relatively easy to add, since it's smart enough to self-manage as an agent and self-direct its learning. Episodic memory systems exist and only need modest improvements - some low-hanging fruit are glaringly obvious from a computational neuroscience perspective, so I expect them to be employed almost as soon as a competent team starts working on episodic memory.

Don't indulge in even possible copium. We need your help to align these things, fast. The possibility of dangerous AGI soon can no longer be ignored.

 

Gambling that the gaps in LLMs abilities (relative to humans) won't be filled soon is a bad gamble.

Really. I don't emphasize this because I care more about humanity's survival than the next decades sucking really hard for me and everyone I love. But how do LW futurists not expect catastrophic job loss that destroys the global economy?

Load More