People who’ve spent a lot of time thinking about P vs NP often have the intuition that “verification is easier than generation”. It’s easier to verify a solution to some equations than to find a solution. It’s easier to verify a password than to guess it. That sort of thing. The claim that it is easier to verify solutions to such problems than to generate them is essentially the claim that P ≠ NP, a conjecture which is widely believed to be true. Thus the intuition that verification is generally easier than generation.
The problem is, this intuition comes from thinking about problems which are in NP. NP is, roughly speaking, the class of algorithmic problems for which solutions are easy to verify. Verifying the solution to some equations is easy, so that problem is in NP.
I think a more accurate takeaway would be that among problems in NP, verification is easier than generation. In other words, among problems for which verification is easy, verification is easier than generation. Rather a less impressive claim, when you put it like that.
With that in mind, here is an algorithmic problem for which generation is easier than verification.
Predicate: given a program, does it halt?
Generation problem: generate a program which halts.
Verification problem: given a program, verify that it halts.
The generation problem is trivial. The verification problem is uncomputable.
That’s it for the post, you all can argue about the application to alignment in the comment section.
I think most people's intuitions come from more everyday experiences like:
These observations seem relevant to questions like "can we delegate work to AI" because they are ubiquitous in everyday situations where we want to delegate work.
The claim in this post seems to be: sometimes it's easier to create an object with property P than to decide whether a borderline instance satisfies property P. You chose a complicated example but you just as well have used something very mundane like "Make a pile of sand more than 6 inches tall." I can do the task by making a 12 inch pile of sand, but if someone gives me a pile of sand that is 6.0000001 inches I'm going to need very precise measurement devices and philosophical clarification about what "tall"means.
I don't think this observation undermines the claim that "it is easier to verify that someone has made a tall pile of sand than to do it yourself." If someone gives me a 6.000001 inch tall pile of sand I can say "could you make it taller?" And if I can ask for a program that halts and someone gives me a program that looks for a proof of false in PA, I can just say "try again."
I do think there are plenty of examples where verification is not easier than generation (and certainly where verification is non-trivial). It's less clear what the relevance of that is.
This is something of a tangent, but juries' unreliability does not particularly suggest that conclusion to me. I immediately see three possible reasons for juries to be unreliable:
- The courts may not reliably comm
... (read more)