People who’ve spent a lot of time thinking about P vs NP often have the intuition that “verification is easier than generation”. It’s easier to verify a solution to some equations than to find a solution. It’s easier to verify a password than to guess it. That sort of thing. The claim that it is easier to verify solutions to such problems than to generate them is essentially the claim that P ≠ NP, a conjecture which is widely believed to be true. Thus the intuition that verification is generally easier than generation.
The problem is, this intuition comes from thinking about problems which are in NP. NP is, roughly speaking, the class of algorithmic problems for which solutions are easy to verify. Verifying the solution to some equations is easy, so that problem is in NP.
I think a more accurate takeaway would be that among problems in NP, verification is easier than generation. In other words, among problems for which verification is easy, verification is easier than generation. Rather a less impressive claim, when you put it like that.
With that in mind, here is an algorithmic problem for which generation is easier than verification.
Predicate: given a program, does it halt?
Generation problem: generate a program which halts.
Verification problem: given a program, verify that it halts.
The generation problem is trivial. The verification problem is uncomputable.
That’s it for the post, you all can argue about the application to alignment in the comment section.
Conditional on such counterexamples existing, I would usually expect to not notice them. Even if someone displayed such a counterexample, it would presumably be quite difficult to verify that it is a counterexample. Therefore a lack of observation of such counterexamples is, at most, very weak evidence against their existence; we are forced to fall back on priors.
I get the impression that you have noticed the lack of observed counterexamples, and updated that counterexamples are rare, without noticing that you would also mostly not observe counterexamples even if they were common. (Though of course this is subject to the usual qualifiers about how it's difficult to guess other peoples' mental processes, you have better information than I about whether you indeed updated in such a way, etc.)
That said, if I were to actively look for such counterexamples in the context of software, the obfuscated C code competition would be one natural target.
We can also get indirect bits of evidence on the matter. For instance, we can look at jury trials, and notice that they are notoriously wildly unreliable in practice. That suggests that, relative to the cognition of a median-ish human, there must exist situations in which one lawyer can point out the problem in another's logic/evidence, and the the median-ish human will not be able verify it. Now, one could argue that this is merely because median-ish humans are not very bright (a claim I'd agree with), but then it's rather a large jump to claim that e.g. you or I is so smart that analogous problems are not common for us.