New essay summarizing some of my latest thoughts on AI safety, ~3500 words. I explain why I think that some of the thought experiments that have previously been used to illustrate the dangers of AI are flawed and should be used very cautiously, why I'm less worried about the dangers of AI than I used to be, and what are some of the remaining reasons for why I do continue to be somewhat worried.
Backcover celebrity endorsement: "Thanks, Kaj, for a very nice write-up. It feels good to be discussing actually meaningful issues regarding AI safety. This is a big contrast to discussions I've had in the past with MIRI folks on AI safety, wherein they have generally tried to direct the conversation toward bizarre, pointless irrelevancies like "the values that would be held by a randomly selected mind", or "AIs with superhuman intelligence making retarded judgments" (like tiling the universe with paperclips to make humans happy), and so forth.... Now OTOH, we are actually discussing things of some potential practical meaning ;p ..." -- Ben Goertzel
Comparing different recognition systems is complex, and it's important to compare apples to apples. CNNs are comparable only to rapid feedforward recognition in the visual system which can be measured with rapid serial presentation experiments. In an untimed test the human brain can use other modules, memory fetches, multi-step logical inferences, etc (all of which are now making their way into ANN systems, but still).
The RSP setup ensures that the brain can only use a single feedforward pass from V1 to PFC, without using more complex feedback and recurrent loops. It forces the brain to use a network configuration similar to what current CNN used - CNNs descend from models of that pathway, after all.
In those test CNNs from 2013 rivaled primate IT cortex representations 1, and 2015 CNNs are even better.
That paper uses a special categorization task with monkeys, but the results generalize to humans as well. There are certainly some mistakes that a CNN will make which a human would not make even with the 150ms time constraint, but the CNNs make less mistakes for the more complex tasks with lots of categories, whereas humans presumably still have lower error for basic recognition tasks (but to some extent that is because researchers haven't focused much on getting to > 99.9% accuracy on simpler recognition tasks).
Cool, thanks for the paper, interesting read!