New LM scaling paper from DeepMind (abs, pdf).
Abstract (my emphasis):
We investigate the optimal model size and number of tokens for training a transformer language model under a given compute budget. We find that current large language models are significantly undertrained, a consequence of the recent focus on scaling language models whilst keeping the amount of training data constant. By training over 400 language models ranging from 70 million to over 16 billion parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and the number of training tokens should be scaled equally: for every doubling of model size the number of training tokens should also be doubled. We test this hypothesis by training a predicted compute-optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and 4× more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks. This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of 67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.
Brief comments on my blog here.
Presumably has implications for Bio Anchors?
It was a single-epoch in the sense that they didn't do at least 1 pass over all their data, they only trained on a subsample of their full Internet text dataset (you can see the ratios in the papers somewhere). But even if they had trained exactly once on every token with none of the oversampling/undersampling business, there's no reason to expect their 1 dataset to be exactly the right size for every possible model size, regardless of what the scaling may be. Turns out, that fixed amount was much too small for the smaller models, and maybe too large for the largest models. (Although even with the Kaplan law people were undertraining models and getting half-baked results - look at Megatron-NLG.)