Common misconceptions about OpenAI
I have recently encountered a number of people with misconceptions about OpenAI. Some common impressions are accurate, and others are not. This post is intended to provide clarification on some of these points, to help people know what to expect from the organization and to figure out how to engage with it. It is not intended as a full explanation or evaluation of OpenAI's strategy. The post has three sections: * Common accurate impressions * Common misconceptions * Personal opinions The bolded claims in the first two sections are intended to be uncontroversial, i.e., most informed people would agree with how they are labeled (correct versus incorrect). I am less sure about how commonly believed they are. The bolded claims in the last section I think are probably true, but they are more open to interpretation and I expect others to disagree with them. Note: I am an employee of OpenAI. Sam Altman (CEO of OpenAI) and Mira Murati (CTO of OpenAI) reviewed a draft of this post, and I am also grateful to Steven Adler, Steve Dowling, Benjamin Hilton, Shantanu Jain, Daniel Kokotajlo, Jan Leike, Ryan Lowe, Holly Mandel and Cullen O'Keefe for feedback. I chose to write this post and the views expressed in it are my own. Common accurate impressions Correct: OpenAI is trying to directly build safe AGI. OpenAI's Charter states: "We will attempt to directly build safe and beneficial AGI, but will also consider our mission fulfilled if our work aids others to achieve this outcome." OpenAI leadership describes trying to directly build safe AGI as the best way to currently pursue OpenAI's mission, and have expressed concern about scenarios in which a bad actor is first to build AGI, and chooses to misuse it. Correct: the majority of researchers at OpenAI are working on capabilities. Researchers on different teams often work together, but it is still reasonable to loosely categorize OpenAI's researchers (around half the organization) at the time of writing as approximat
Can you turn this argument into a mechanistic estimate of the model's accuracy? (You'd need to do things like deduce correlations from the weights, rather than just observe them empirically - but it seems like you're getting close.)