"The answer is that the universe is governed by a tiny subset of all possible functions. In other words, when the laws of physics are written down mathematically, they can all be described by functions that have a remarkable set of simple properties."
“For reasons that are still not fully understood, our universe can be accurately described by polynomial Hamiltonians of low order.” These properties mean that neural networks do not need to approximate an infinitude of possible mathematical functions but only a tiny subset of the simplest ones."
Interesting article, and just diving into the paper now, but it looks like this is a big boost to the simulation argument. If the universe is built like a game engine, with stacked sets like Mandelbrots, then the simplicity itself becomes a driver in a fabricated reality.
https://www.technologyreview.com/s/602344/the-extraordinary-link-between-deep-neural-networks-and-the-nature-of-the-universe/
Why does deep and cheap learning work so well?
http://arxiv.org/abs/1608.08225
This question answers itself. If neural networks could really approximate every possible function, they could never generalize. That is the whole point of statistical learning theory: you get a Probably Approximately Correct (PAC) generalization bound when 1) your learning machine gets good empirical accuracy and 2) the number of possible functions expressible by the machine is small in some sense compared to the volume of training data.