Fictionalized/Paraphrased version of a real dialog between me and John Wentworth.
Fictionalized Me: So, in the Eliezer/Richard dialogs, Eliezer is trying to get across this idea that consequentialism deeply permeates optimization, and this is important, and that's one[1] reason why Alignment is Hard. But something about it is confusing and slippery, and he keeps trying to explain it and it keeps not-quite-landing.
I think I get it, but I'm not sure I could explain it. Or, I'm not sure who to explain it to. I don't think I could tell who was making a mistake, where "consequentialism is secretly everywhere" is a useful concept for realizing-the-mistake.
Fictionalized John: [stares at me]
Me: Okay, I guess I'm probably supposed to try and explain this and see what happens instead of hoping you'll save me.
...
Me: Okay, so the part that's confusing here is that this is supposed to be something that Eliezer thinks thoughtful, attentive people like Richard (and Paul?) aren't getting, despite them having read lots of relevant material and paying attention and being generally on board with "alignment is hard."
...so, what is a sort of mistake I could imagine a smart, thoughtful person who read the sequences making here?
My Eliezer-model imagines someone building what they think is an aligned ML system. They've trained it carefully to do things they reflectively approve of, they've put a lot of work into making it interpretable and honest. This Smart Thoughtful Researcher has read the sequences and believes that alignment is hard and whatnot. Nonetheless, they'll have failed to really grok this "consequentialism-is-more-pervasive-and-important-than-you-think" concept. And this will cause doom when they try to scale up their project to accomplish something actually hard.
I... guess what I think Eliezer thinks is that Thoughful Researcher isn't respecting inner optimizers enough. They'll have built their system to be carefully aligned, but to do anything hard, it'll end up generating inner-optimizers that aren't aligned, and the inner-optimizers will kill everyone.
...
John: Nod. But not quite. I think you're still missing something.
You're familiar with the arguments of convergent instrumental goals?
Me: i.e. most agents will end up wanting power/resources/self-preservation/etc?
John: Yeah.
But not only is "wanting power and self preservation" convergently instrumental. Consequentialism is convergently instrumental. Consequentialism is a (relatively) simple, effective process for accomplishing goals, so things that efficiently optimize for goals tend to approximate it.
Now, say there's something hard you want to do, like build a moon base, or cure cancer or whatever. If there were a list of all the possible plans that cure cancer, ranked by "likely to work", most of the plans that might work route through "consequentalism", and "acquire resources."
Not only that, most of the plans route through "acquire resources in a way that is unfriendly to human values." Because in the space of all possible plans, while consequentialism doesn't take that many bits to specify, human values are highly complex and take a lot of bits to specify.
Notice that I just said "in the space of all possible plans, here are the most common plans." I didn't say anything about agents choosing plans or acting in the world. Just listing the plans. And this is important because the hard part lives in the choosing of the plans.
Now, say you build an oracle AI. You've done all the things to try and make it interpretable and honest and such. If you ask it for a plan to cure cancer, what happens?
Me: I guess it gives you a plan, and... the plan probably routes through consequentialist agents acquiring power in an unfriendly way.
Okay, but if I imagine a researcher who is thoughtful but a bit too optimistic, what they might counterargue with is: "Sure, but I'll just inspect the plans for whether they're unfriendly, and not do those plans."
And what I might then counterargue their counterargument with is:
1) Are you sure you can actually tell which plans are unfriendly and which are not?
and,
2) If you're reading very carefully, and paying lots of attention to each plan... you'll still have to read through a lot of plans before you get to one that's actually good.
John: Bingo. I think a lot of people imagine asking an oracle to generate 100 plans, and they think that maybe half the plans will be pretty reasonable. But, the space of plans is huge. Exponentially huge. Most plans just don't work. Most plans that work route through consequentialist optimizers who convergently seek power because you need power to do stuff. But then the space of consequentialist power-seeking plans are still exponentially huge, and most ways of seeking power are unfriendly to human values. The hard part is locating a good plan that cures cancer that isn't hostile to human values in the first place.
Me: And it's not obvious to me whether this problem gets better or worse if you've tried to train the oracle to only output "reasonable seeming plans", since that might output plans that are deceptively unaligned.
John: Do you understand why I brought up this plan/oracle example, when you originally were talking about inner optimizers?
Me: Hmm. Um, kinda. I guess it's important that there was a second example.
John: ...and?
Me: Okay, so partly you're pointing out that hardness of the problem isn't just about getting the AI to do what I want, it's that doing what I want is actually just really hard. Or rather, the part where alignment is hard is precisely when the thing I'm trying to accomplish is hard. Because then I need a powerful plan, and it's hard to specify a search for powerful plans that don't kill everyone.
John: Yeah. One mistake I think people end up making here is that they think the problem lives in the AI-who's-deciding/doing things, as opposed to in the actual raw difficulty of the search.
Me: Gotcha. And it's important that this comes up in at least two places – inner optimizers with an agenty AI, and an oracle that just output plans that would work. And the fact that it shows up in two fairly different places, one of which I hadn't thought of just now, is suggestive that it could show up in even more places I haven't thought of at all.
And this is confusing enough that it wasn't initially obvious to Richard Ngo, who's thought a ton about alignment. Which bodes ill for the majority of alignment researchers who probably are less on-the-ball.
- ^
I'm tempted to say "the main reason" why Alignment Is Hard, but then remembered Eliezer specifically reminded everyone not to summarize him as saying things like "the key reason for X" when he didn't actually say that, and often is tailoring his arguments to a particular confusion with his interlocuter.
This dialog was much less painful for me to read than i expected, and I think it manages to capture at least a little of the version-of-this-concept that I possess and struggle to articulate!
(...that sentence is shorter, and more obviously praise, in my native tongue.)
A few things I'd add (epistemic status: some simplification in attempt to get a gist across):
Part of what's going on here is that reality is large and chaotic. When you're dealing with a large and chaotic reality, you don't get to generate a full plan in advance, because the full plan is too big. Like, imagine a reasoner doing biological experimentation. If you try to "unroll" that reasoner into an advance plan that does not itself contain the reasoner, then you find yourself building this enormous decision-tree, like "if the experiments come up this way, then I'll follow it up with this experiment, and if instead it comes up that way, then I'll follow it up with that experiment", and etc. This decision tree quickly explodes in size. And even if we didn't have a memory problem, we'd have a time problem -- the thing to do in response to surprising experimental evidence is often "conceptually digest the results" and "reorganize my ontology accordingly". If you're trying to unroll that reasoner into a decision-tree that you can write down in advance, you've got to do the work of digesting not only the real results, but the hypothetical alternative results, and figure out the corresponding alternative physics and alternative ontologies in those branches. This is infeasible, to say the least.
Reasoners are a way of compressing plans, so that you can say "do some science and digest the actual results", instead of actually calculating in advance how you'd digest all the possible observations. (Note that the reasoner specification comprises instructions for digesting a wide variety of observations, but in practice it mostly only digests the actual observations.)
Like, you can't make an "oracle chess AI" that tells you at the beginning of the game what moves to play, because even chess is too chaotic for that game tree to be feasibly representable. You've gotta keep running your chess AI on each new observation, to have any hope of getting the fragment of the game tree that you consider down to a managable size.
Like, the outputs you can get out of an oracle AI are "no plan found", "memory and time exhausted", "here's a plan that involves running a reasoner in real-time" or "feed me observations in real-time and ask me only to generate a local and by-default-inscrutable action". In the first two cases, your oracle is about as useful as a rock; in the third, it's the realtime reasoner that you need to align; in the fourth, all whe word "oracle" is doing is mollifying you unduly, and it's this "oracle" that you need to align.
(NB: It's not obvious to me that cancer cures require routing through enough reality-chaos that plans fully named in advance need to route through reasoners; eg it's plausible that you can cure cancer with a stupid amount of high-speed trial and error. I know of no pivotal act, though, that looks so easy to me that nonrealtime-plans can avoid the above quadlemma.)
My point above addresses this somewhat, but I'm going to tack another point on for good measure. Suppose you build an oracle and take the "the plan involves a realtime reasoner" fork of the above quadlemma. How does that plan look? Does the oracle say "build the reasoner using this simple and cleanly-factored mind architecture, which is clearly optimizing for thus-and-such objectives?" If that's so easy, why aren't we building our minds that way? How did it solve these alignment challenges that we find so difficult, and why do you believe it solved them correctly? Also, AIs that understand clean mind-architectures seem deeper in the tech tree than AIs that can do some crazy stuff; why didn't the world end five years before reaching this hypothetical?
Like, specifying a working mind is hard. (Effable, transparent, and cleanly-factored minds are hander still, apparently.) You probably aren't going to get your first sufficiently-good-reasoner from "project oracle" that's training a non-interactive system to generate plans so hard that it invents its own mind architectures and describes their deployment, you're going to get it from some much more active system that is itself a capable mind before it knows how to design a capable mind, like (implausible detail for the purpose of concrete visualization) the "lifelong learner" that's been chewing through loads and loads of toy environments while it slowly acretes the deep structures of cognition.
Maybe once you have that, you can go to your oracle and be like "ok, you're now allowed to propose plans that involve deploying this here lifelong learner", but of course your lifelong learner doesn't have to be a particularly alignable architecture; its goals don't have to be easily identifiable and cleanly separable from the rest of its mind.
Which is mostly just providing more implausible detail that makes the "if your oracle emits plans that involve reasoners, then it's the reasoners you need to align" point more concrete. But... well, I'm also trying to gesture at why the "what if we train the oracle to only output reasonable plans?" thought seems, to me, to come at it from a wrong angle, in a manner that I still haven't managed to precisely articulate.
(I'm also hoping this conveys at least a little more of why the "just build an oracle that does alignment research" looks harder than doing the alignment research our own damn selves, and I'm frustrated by how people give me a pitying look when I suggest that humanity should be looking for more alignable paradigms, and then turn around and suggest that oracles can do that no-problem. But I digress.)
I wasn't aware of them. Thanks. Yes, that's exactly the sort of thing I'd expect to see if there was a large possible upside in better teaching materials that an Oracle could produce. So I no longer disagree with Rafael & Richard on this.