I'm reading a paper called 'Reasonable Doubt and Presumtion of Innocence: The Case of the Bayesian Juror' for a Physics/Policy course I'm taking, and am a bit confused by something in it. Note here that I'm quite new to Bayesianism and do not claim to understand in entirity how it all works.
The claim made is that in pure Bayesianism, all probabilities are subjective (a probability of *you*). As I had understood from initial readings on Bayesianism, it is supposed to be entirely objective (ie you look at the thing you want to determine the probability of, you look at the evidence you have available, and you thusly determine the probability of the thing). As I understand it, this makes Bayesianism objective, at least within the scope of the Bayesian's knowledge.
Is my understanding wrong somewhere? Could some kind and enlightened souls please explain this to me?
It's subjective for past events, and a mix of subjective and objective (depending on your model of determinism and randomness) for future events. For most cases, it's simplest and gives the right answers to treat it as subjective always.
Think of it as not "chance that something happened", but "my level of belief in what happened". What happened, happened - there's no probability there, no range of possibilities. But you don't have access to truth, only to your limited observations (including second-hand observations, which themselves are suspect). Bayes' rule is a way to incorporate a new observation into the range of possible truths which fit your previous observations.