This came up as a tangent from this question, which is itself a tangent from a discussion on The Hidden Complexity of Wishes.
Suppose we have a perfect cubical box of length 1 meter containing exactly 1 mol of argon gas at room temperature.
- At t=0, the gas is initialized with random positions and velocities drawn from the Maxwell-Boltzmann distribution.
- Right after t=0 we perturb one of the particles by 1 angstrom in a random direction to get the state .
- All collisions are perfectly elastic, so there is no viscosity [edit, this is wrong; even ideal gases have viscosity] and energy is conserved.
- For each possible perturbation, we run physics forward for 20 seconds and measure whether there are more gas molecules in the left side or right side of the box at t=20 seconds (the number on each side will be extremely close to equal, but differ slightly). Do more than 51% of the possible perturbations result in the same answer? That is, if is the predicate "more gas molecules on the left at t=20", is ?
This is equivalent to asking if an omniscient forecaster who knows the position and velocity of all atoms at t=0 except for 1 angstrom of uncertainty in 1 atom can know with >51% confidence which side has more gas molecules at t=20.
I think the answer is no, because multiple billiard balls is a textbook example of a chaotic system that maximizes entropy quickly, and there's no reason information should be preserved for 20 seconds. This is enough time for each atom to collide with others millions of times, and even sound waves will travel thousands of meters and have lots of time to dissipate.
@habryka thinks the answer is yes and the forecaster could get more than 99.999% accuracy, because with such a large number of molecules, there should be some structure that remains predictable.
Who is right?
Predicting the ratio at t=20s is hopeless. The only sort of thing you can predict is the variance in the ratio over time, like the ratio as a function of time is μ(t)=0.5+ϵ , where ϵ∼N(0,σ2) . Here the large number of atoms lets you predict σ2 , but the exact number after 20 seconds is chaotic. To get an exact answer for how much initial perturbation still leads to a predictable state, you'd need to compute the lyapunov exponents of an interacting classical gas system, and I haven't been able to find a paper that does this within 2 min of searching. (Note that if the atoms are non-interacting the problem stops being chaotic, of course, since they're just bouncing around on the walls of the box)
Decoherence (or any other interpretation of QM) will definitely lead to a pretty uniform distribution over this sort of time scale. Just as in the classical case, the underlying dynamics is extremely unstable within the bounds of conservation laws, with the additional problem that the final state for any given perturbation is a distribution instead of a single measurement.
If there is any actual asymmetry in the setup (e.g. one side of the box was 0.001 K warmer than the other, or the volumes of each side were 10^-9 m^3 different), you will probably get a v... (read more)