Two or three months ago, my trip to Las Vegas made me ponder the following: If all gambles in the casinos have negative expected values, why do people still engage in gambling - especially my friends fairly well-versed in probability/statistics?
Suffice it to say, I still have not answered that question.
On the other hand, this did lead me to ponder more about whether rational behavior always involves making choices with the highest expected (or positive) value - call this Rationality-Expectation (R-E) hypothesis.
Here I'd like to offer some counterexamples that show R-E is clearly false, to me at least. (In hindsight, these look fairly trivial but some commentators on this site speak as if maximizing expectation is somehow constitutive of rational decision making - as I used to. So, it may be interesting for those people at the very least.)
- Suppose someone offers you a (single trial) gamble A in which you stand to gain 100k dollars with probability 0.99 and stand to lose 100M dollars with probability 0.01. Even though expectation is -98999000 dollars, you should still take the gamble since the probability of winning on a single trial is very high - 0.99 to be exact.
- Suppose someone offers you a (single trial) gamble B in which you stand to lose 100k dollars with probability 0.99 and stand to gain 100M dollars with probability 0.01. Even though expectation is 98999000 dollars, you should not take the gamble since the probability of losing on a single trial is very high - 0.99 to be exact.
A is a gamble that shows that choices with negative expectation can sometimes lead to net pay off.
B is a gamble that shows that choices with positive expectation can sometimes lead to net costs.
As I'm sure you've all noticed, expectation is only meaningful in decision-making when the number of trials in question can be large (or more precisely, large enough relative to the variance of the random variable in question). This, I think, in essence is another way of looking at Weak Law of Large Numbers.
In general, most (all? few?) statistical concepts make sense only when we have trials numerous enough relative to the variance of the quantities in question.
This makes me ponder a deeper question, nonetheless.
Does it make sense to speak of probabilities only when you have numerous enough trials? Can we speak of probabilities for singular, non-repeating events?
Assigning a non-repeating event the probability P means that, for a well-calibrated agent, if you assign 100 different things this probability then 100 * P of them will actually occur. I believe this is a standard interpretation of Bayesian probability, and it puts things in terms of frequencies of actual event outcomes.
ETA: Alternatively, one may think of Bayesian probability as the answer to the question "if I believed this statement, then in which fraction P of all plausible worlds in which I ended up with this information would I be correct"?
I have to disagree with this interpretation. The whole point is that the frequency interpretation of probability can be a specific case of the Bayesian (probability = belief) interpretation, but not vice versa.
If I say I belief in the existence of aliens with 0.2 belief i think its non-intuitive and unrealistic that what im really saying is, "i think aliens exist in 20% of all plausible worlds". Apart from the difficulty in clearly defining 'plausible' the point of Bayesianism is that this simply represents my state of knowledge/belief.