Today's post, Optimization was originally published on 13 September 2008. A summary (taken from the LW wiki):
A discussion of the concept of optimization.
Discuss the post here (rather than in the comments to the original post).
This post is part of the Rerunning the Sequences series, where we'll be going through Eliezer Yudkowsky's old posts in order so that people who are interested can (re-)read and discuss them. The previous post was Psychic Powers, and you can use the sequence_reruns tag or rss feed to follow the rest of the series.
Sequence reruns are a community-driven effort. You can participate by re-reading the sequence post, discussing it here, posting the next day's sequence reruns post, or summarizing forthcoming articles on the wiki. Go here for more details, or to have meta discussions about the Rerunning the Sequences series.
Your brain is a causal component of the optimization processes; therefore it seems fair to give it credit. If I take away your plow, it seems reasonable to conclude that your optimization would be less effective, but not ineffective. If I take away your brain, it seems reasonable to conclude that the plow would lose all optimization power. It seems reasonable to conclude from this that your brain has more optimization power, even within that limited context, than the plow does. Sorting out optimization power of your brain vs the plants is difficult for the same reasons that sorting out causality is difficult.
Your point that the definition of "count states" is awkward is exactly the point I've been trying to make. Counting states is precisely entropy, which directly implies that refrigerators and oil refineries are powerful optimizers. This conclusion seems problematic, in that it does not align well with all the connotations of "optimization process" that Eliezer is talking about. That's why I'm saying we need a technical explanation of optimization power, not a loose qualitative explanation.
It seems to me that optimization power should somehow be measured against the complexity of the problem domain. How, I don't know. I'm just trying to point out that the original post is farther from a complete treatment on the topic than I thought the first time I read it, or than most of the comments seem to give it credit for.
I'm probably better at concrete examples. Consider a list of N comparable items. An optimizing process that orders them from least to greatest (sorts them) preserving relative order has optimization measure 1/N!. A less optimal process by the measure doesn't maintain relative order and at worst has optimization measure N!/N! (completely reordering a list of N identical items) and at best (N-M)!/N! where M is the number of unique values among the items.
Sorting maintaining order is optimal under the measure. Sorting ignoring order is variable under the ... (read more)