From what I understand, the Kolmogorov axioms make no mention of conditional probability. That is simply defined. If I really want to show how probability actually works, I'm not going to argue "by definition". Does anyone know a modified form that uses simpler axioms than P(A|B) = P(A∩B)/P(B)?
But it's not an axiom; it's a definition.
It bothers me that you seem to be under the impression that the equation represents some kind of substantive claim. It doesn't; it's just the establishment of a shorthand notation. (It bothers me even more that other commenters don't seem to be noticing that you're suffering from a confusion about this.)
A reasonable question to ask might be: "why is the quantity P(A∩B)/P(B) interesting enough to be worth having a shorthand notation for?" But that isn't what you asked, and the answer wouldn't consist of a "proof", so despite its being the closest non-confused question to yours I'm not yet sure whether an attempt to answer it would be helpful to you.
If you simply view P(A|B) = P(A∩B)/P(B) as a shorthand, with "P(A|B)" as just an arbitrary symbol, then you're right - it needs no more explanation. But we don't consider P(A|B) to be just an arbitary symbol - we think it has a specific meaning, which is "the probability of A given B". And we think that "P(A∩B)/P(B)" has been chosen to equal "P(A|B)" because it has the properties we feel "the probability of A given B" should have.
I think DanielLC is asking why it is specifically P(A∩B)/P(B), and not some other formula, that has been chosen to correspond with the intuitive notion of "the probability of A given B".