From what I understand, the Kolmogorov axioms make no mention of conditional probability. That is simply defined. If I really want to show how probability actually works, I'm not going to argue "by definition". Does anyone know a modified form that uses simpler axioms than P(A|B) = P(A∩B)/P(B)?
In that case, it's no wonder that I'm having trouble relating, because I didn't understand what "the probability of A given B" meant until somebody told me it was P(A∩B)/P(B).
There is a larger point here:
In my opinion, an important part of learning to think mathematically is learning not to think like this. That is, not to think of symbols as having a mysterious "meaning" apart from their formal definitions.
This is what causes some people to have trouble accepting that 0.999.... = 1: they don't understand that the question of what 0.999.... "is" is simply a matter of definition, and not some mysterious empirical fact.
Paradoxically, this is a way in which my lack of "mathematical ability" is a kind of mathematical ability in its own right, because I often don't have these mysterious "intuitions" that other people seem to, and thus for me it tends to be second nature that the formal definition of something is what the thing is. For other people, I suppose, thinking this way is a kind of skill they have to consciously learn.
Pure formalism is useful for developing new math, but math cannot be applied to real problems without the assignment of meaning to the variables and equations. Most people are more interested in using math than in what amounts to intellectual play, as enjoyable and potentially useful as that can be. Note that I tend to be more of a formalist myself, which is why I mentioned in an old comment on HN that I tend to learn math concepts fairly easily, but have trouble applying it.