"Hypercomputation" is a term coined by two philosophers, Jack Copeland and Dianne Proudfoot, to refer to allegedly computational processes that do things Turing machines are in principle incapable of doing. I'm somewhat dubious of whether any of the proposals for "hypercomputation" are really accurately described as computation, but here, I'm more interested in another question: is there any chance it's possible to build a physical device that answers questions a Turing machine cannot answer?
I've read a number of Copeland and Proudfoot's articles promoting hypercomputation, and they claim this is an open question. I have, however, seen some indications that they're wrong about this, but my knowledge of physics and computability theory isn't enough to answer this question with confidence.
Some of the ways to convince yourself that "hypercomputation" might be physically possible seem like obvious confusions, for example if you convince yourself that some physical quality is allowed to be any real number, and then notice that because some reals are non-computable, you say to yourself that if only we could measure such a non-computable quantity then we could answer questions no Turing machine could answer. Of course, the idea of doing such a measurement is physically implausible even if you could find a non-computable physical quantity in the first place. And that mistake can be sexed up in various ways, for example by talking about "analog computers" and assuming "analog" means it has components that can take any real-numbered value.
Points similar to the one I've just made exist in the literature on hypercomputation (see here and here, for example). But the critiques of hypercomputation I've found tend to focus on specific proposals. It's less clear whether there are any good general arguments in the literature that hypercomputation is physically impossible, because it would require infinite-precision measurements or something equally unlikely. It seems like it might be possible to make such an argument; I've read that the laws of physics are consiered to be computable, but I don't have a good enough understanding of what that means to tell if it entails that hypercomputation is physically impossible.
Can anyone help me out here?
Is it an actual spacetime, or just a class of every spacetime with this property? I'm having trouble locating a paper describing the metric that is not just the inside of the Kerr metric.
As a self-appointed resident GR expert, I would like to caution against this misapplication of GR. You cannot simply "place a Turing machine into a spacetime". The Turing machine is not a test particle. It has mass, it computes stuff and hence radiates heat, it increases the entropy of the universe. As a result, the spacetime with the Turing machine in it is different from the spacetime without. The change is tiny and can be neglected in many circumstances, but most emphatically not in this case.
The reason that placing a material object at non-zero temperature into a spacetime which maps an infinite affine-parameter geodesic into a finite one is that you get infinite amount of radiation and entropy in a finite time. As a result, your spacetime blows up into bits. This is a modification of Hawking's argument in favor of his famous Chronology Protection Conjecture (he used CTCs and virtual particles, not real objects).
This argument is quite general, but not often appreciated and not formalized, except in a few cases. It also applies to any attempts to use a CTC as an actual trajectory of a warm material object: you cannot hope to match up every microstate exactly after a complete loop simply by evolution. Hence the Novikov's disclaimer about his self-consistency principle: it's vacuous unless you presume "new physics" beyond GR.
It's the class of every spacetime with the property. Examples besides the Kerr spacetime are the universal covering of anti-de Sitter spacetime, the Reissner-Nodstrom spacetime, even a simple Minkowski spacetime rolled up along the temporal axis (or in fact any spacetime with CTCs).
... (read more)