"Hypercomputation" is a term coined by two philosophers, Jack Copeland and Dianne Proudfoot, to refer to allegedly computational processes that do things Turing machines are in principle incapable of doing. I'm somewhat dubious of whether any of the proposals for "hypercomputation" are really accurately described as computation, but here, I'm more interested in another question: is there any chance it's possible to build a physical device that answers questions a Turing machine cannot answer?
I've read a number of Copeland and Proudfoot's articles promoting hypercomputation, and they claim this is an open question. I have, however, seen some indications that they're wrong about this, but my knowledge of physics and computability theory isn't enough to answer this question with confidence.
Some of the ways to convince yourself that "hypercomputation" might be physically possible seem like obvious confusions, for example if you convince yourself that some physical quality is allowed to be any real number, and then notice that because some reals are non-computable, you say to yourself that if only we could measure such a non-computable quantity then we could answer questions no Turing machine could answer. Of course, the idea of doing such a measurement is physically implausible even if you could find a non-computable physical quantity in the first place. And that mistake can be sexed up in various ways, for example by talking about "analog computers" and assuming "analog" means it has components that can take any real-numbered value.
Points similar to the one I've just made exist in the literature on hypercomputation (see here and here, for example). But the critiques of hypercomputation I've found tend to focus on specific proposals. It's less clear whether there are any good general arguments in the literature that hypercomputation is physically impossible, because it would require infinite-precision measurements or something equally unlikely. It seems like it might be possible to make such an argument; I've read that the laws of physics are consiered to be computable, but I don't have a good enough understanding of what that means to tell if it entails that hypercomputation is physically impossible.
Can anyone help me out here?
Thanks for the examples, that's what I suspected, though I find the CTC examples dubious at best, as you appeal to a much stronger impossibility to justify a weaker one. I am not a stickler for global hyperbolicity, I can certainly imagine topological and/or geometric instantons "magically" appearing and disappearing. These don't cause infinite backreaction the way CTCs do.
It does indeed attempts to address most of the issues, but not the divergent emissions one, which seems mutually exclusive with non-divergent red shift. I am even fine with the "requires infinite energy" issue, since I can certainly imagine pumping energy through a whitehole from some other inaccessible spacetime (or some other instanton-like event).
My interest is whether some hypercomputational construct can be embedded into our universe (which is roughly of the expanding FRW-dS type), not whether some other universe where entropy can decrease can perform these tricks. The reason, again, is that if you use much stronger assumptions to justify something weaker, the argument becomes much less interesting. In an extreme case "because DM decided so" would trivially support anything you want.