Not sure if this has been covered on LW, but it seems highly relevant to WBE development. Link here:
http://www.reddit.com/r/IAmA/comments/147gqm/we_are_the_computational_neuroscientists_behind/
A few questioners mention the Singularity and make Skynet jokes.
The abstract from their paper in Science:
A central challenge for cognitive and systems neuroscience is to relate the incredibly complex behavior of animals to the equally complex activity of their brains. Recently described, large-scale neural models have not bridged this gap between neural activity and biological function. In this work, we present a 2.5-million-neuron model of the brain (called “Spaun”) that bridges this gap by exhibiting many different behaviors. The model is presented only with visual image sequences, and it draws all of its responses with a physically modeled arm. Although simplified, the model captures many aspects of neuroanatomy, neurophysiology, and psychological behavior, which we demonstrate via eight diverse tasks.
I'm curious to see LWers' perspectives on the project.
I think we need to separate the concept of whole brain emulation, from that of biology-inspired human-like AI. This actually looks pretty bad for Robin Hanson's singularity hypothesis, where the first emulations to perfectly emulate existing humans suddenly make the cost of labor drop dramatically. If this research pans out, then we could have a "soft takeoff", where AI slowly catches up to us, and slowly overtakes us.
CNRG_UWaterloo, regarding mind uploads:
So we should expect machine labor to gradually replace human labor, exactly as it has since the beginning of the industrial revolution, as more and more capabilities are added, with "whole brain emulation" being one of the last features needed to make machines with all the capabilities of humans (if this step is even necessary). It's possible, of course, that we could wind up in a situation where the "last piece of the puzzle" turns out to be hugely important, but I don't see any particular reason to think that will happen.
Robin's economic model for growth explosion with AI uses a continuum of tasks for automation. The idea is that as you automate more tasks, those tasks are done very efficiently, but the remaining ones become bottlenecks, making up more of GDP and limiting growth. Think Baumol's cost disease: as our manufacturing productivity has increased, economic growth winds up more limited by productivity improvements in service sectors like health care and education, computer programming, and science that have been resistant to automation.
As you eliminate the last bot... (read more)