Today's post, 0 And 1 Are Not Probabilities was originally published on 10 January 2008. A summary (taken from the LW wiki):
In the ordinary way of writing probabilities, 0 and 1 both seem like entirely reachable quantities. But when you transform probabilities into odds ratios, or log-odds, you realize that in order to get a proposition to probability 1 would require an infinite amount of evidence.
Discuss the post here (rather than in the comments to the original post).
This post is part of the Rerunning the Sequences series, where we'll be going through Eliezer Yudkowsky's old posts in order so that people who are interested can (re-)read and discuss them. The previous post was Infinite Certainty, and you can use the sequence_reruns tag or rss feed to follow the rest of the series.
Sequence reruns are a community-driven effort. You can participate by re-reading the sequence post, discussing it here, posting the next day's sequence reruns post, or summarizing forthcoming articles on the wiki. Go here for more details, or to have meta discussions about the Rerunning the Sequences series.
Jaynes definitely believed in 0 and 1 probabilities. In Probability Theory: The Logic of Science, equation (2.71), he gives
P(B | A, (A implies B)) = 1
P(A | not B, (A implies B)) = 0
Remember that probabilities are relative to a state of information. If X is a state of information from which we can infer A via deductive logic, then P(A | X) = 1 necessarily. Some common cases of this are
A is a tautology,
we are doing some sort of case analysis and X represents one of the cases being considered, or
we are investigating the consequences of some hypothesis and X represents the hypothesis.
However, Eliezer's fundamental point is correct when we turn to the states of information of rational beings and propositions that are not tautologies or theorems. If a person's state of information is X, and P(A | X) = 1, then no amount of contrary evidence can dissuade that person of A. This does not sound like rational behavior, unless A is necessarily true (in the mathematical sense of being a tautology or theorem).
I did not say that he didn't. I said that he didn't like Kolmogorov's axioms. You can also derive Bayes' rule from Kolmogorov's axioms; that doesn't mean Jayes didn't believe in Bayes' rule.