To recap, A is trying to deduce enough about U to maximize it:
A := Find some f with a proof of "U = f(A)", then return argmax f.
If U is A, A can fail by proving f = {(5,5),(10,0)}: If it could prove this, it would be true, for only 5 is checked. Then by Löb's theorem, it can prove this.
I've thrown this problem at some people in my university and a fellow student's idea led to:
A' := Find all f with a proof of "U = f(A')", then return argmax (their pointwise maximum).
The true f is among the found f. Fooling ourselves into a suboptimal action would require us to believe it at least as good as the true maximum, which the single check refutes.
Note that A' can't prove that some f is not found, due to Gödel. Therefore, it can never prove what it is going to do!
(Oh, "have heart" was not "stay strong even though you're 7 years behind", but "be merciful, I wrote that 7 years ago".)
Can the failure of this approach to handle scenarios as complicated as cellular automata be formalized using a problem like 5-and-10?
What do you mean by provability being decidable? Couldn't I ask whether it is provable that a Turing machine halts?
Edit: In Conway's Game of Life, one can build replicators and Turing machines. If we strewed provability oracle interfaces across the landscape, we should be able to implement this reasoner and it could do things like attempting to maximize the number of gliders. Pitted against a honeycomb maximizer, we could investigate whether they would each render themselves unpredictable to the other through the oracle, or whether the fact that war in Life just sends everything into primordial soup would get them to do a values handshake, etc. Doesn't sound like modal logic doesn't apply?