Fired from OpenAI's Superalignment team, Aschenbrenner now runs a fund dedicated to funding AGI-focused startups, according to The Information.
"Former OpenAI super-alignment researcher Leopold Aschenbrenner, who was fired from the company for allegedly leaking information, has started an investment firm to back startups with capital from former Github CEO Nat Friedman, investor Daniel Gross, Stripe CEO Patrick Collision and Stripe president John Collision, according to his personal website.
In a recent podcast interview, Aschenbrenner spoke about the new firm as a cross between a hedge fund and a think tank, focused largely on AGI, or artificial general intelligence. “There’s a lot of money to be made. If AGI were priced in tomorrow, you could maybe make 100x. Probably you can make even way more than that,” he said. “Capital matters.”
“We’re going to be betting on AGI and superintelligence before the decade is out, taking that seriously, making the bets you would make if you took that seriously. If that’s wrong, the firm is not going to do that well,” he said."
What happened to his concerns over safety, I wonder?
Leopold's interview with Dwarkesh is a very useful source of what's going on in his mind.
What happened to his concerns over safety, I wonder?
He doesn't believe in a 'sharp left turn', which means he doesn't consider general intelligence to be a discontinuous (latent) capability spike such that alignment becomes significantly more difficult after it occurs. To him, alignment is simply a somewhat harder empirical techniques problem like capabilities work is. I assume he imagines in behavior similar to current RLHF-ed models even as frontier labs have doubled or quadrupled the OOMs of optimization power applied to the creation of SOTA models.
He models (incrementalist) alignment research as "dual use", and therefore effectively models capabilities and alignment as effectively the same measure.
He also expects humans to continue to exist once certain communities of humans achieve ASI, and imagines that the future will be 'wild'. This is a very rare and strange model to have.
He is quite hawkish -- he is incredibly focused on China not stealing AGI capabilities, and believes that private labs are going to be too incompetent to defend against Chinese infiltration. He prefers that the USGOV would take over the AGI development such that they can race effectively against AGI.
His model for take-off relies quite heavily on "trust the trendline" and estimating linear intelligence increases with more OOMs of optimization power (linear with respect to human intelligence growth from childhood to adulthood). Its not the best way to extrapolate what will happen, but it is a sensible concrete model he can use to talk to normal people and sound confident and not vague -- a key skill if you are an investor, and an especially key skill for someone trying to make it in the SF scene. (Note he clearly states in the interview that he's describing his modal model for how things will go and he does have uncertainty over how things will occur, but desires to be concrete about what is his modal expectation.)
He has claimed that running a VC firm means he can essentially run it as a "think tank" too, focused on better modeling (and perhaps influencing) the AGI ecosystem. Given his desire for a hyper-militarization of AGI research, it makes sense that he'd try to steer things in this direction using the money and influence he will have and build, as a founder of n investment firm.
So in summary, he isn't concerned about safety because he prices it in as something about as difficult (or slightly more difficult than) capabilities work. This puts him in an ideal epistemic position to run a VC firm for AGI labs, since his optimism is what persuades investors to provide him money since they expect him to attempt to return them a profit.
I looked at the paper you recommended Zack. The specific section having to do with "how" AGI is developed (para 1.2) skirts around the problem.
"We assume that AGI is developed by pretraining a single large foundation model using selfsupervised learning on (possibly multi-modal) data [Bommasani et al., 2021], and then fine-tuning it using model-free reinforcement learning (RL) with a reward function learned from human feedback [Christiano et al., 2017] on a wide range of computer-based tasks.4 This setup combines elements of the techniques used to train cutting-edge systems such as GPT-4 [OpenAI, 2023a], Sparrow [Glaese et al., 2022], and ACT-1 [Adept, 2022]; we assume, however, that 2 the resulting policy goes far beyond their current capabilities, due to improvements in architectures, scale, and training tasks. We expect a similar analysis to apply if AGI training involves related techniques such as model-based RL and planning [Sutton and Barto, 2018] (with learned reward functions), goal-conditioned sequence modeling [Chen et al., 2021, Li et al., 2022, Schmidhuber, 2020], or RL on rewards learned via inverse RL [Ng and Russell, 2000]—however, these are beyond our current scope."
Altman has recently said in a speech that continuing to do what has led them to GPT4 is probably not going to get to AGI. ""Let's use the word superintelligence now, as superintelligence can't discover novel physics, I don't think it's a superintelligence. Training on the data of what you know, teaching to clone the behavior of humans and human text, I don't think that's going to get there. So there's this question that has been debated in the field for a long time: what do we have to do in addition to a language model to make a system that can go discover new physics?"
https://the-decoder.com/sam-altman-on-agi-scaling-large-language-models-is-not-enough/
I think it's pretty clear that no one has a clear path to AGI, nor do we know what a superintelligence will do, yet the Longtermist ecosystem is thriving. I find that curious, to say the least.