This article largely addresses the challenges of vaccine development for SARS-CoV-2.
It was extremely clarifying for me. It seems to have consulted several experts for opinions, but is written for close-to-layman reading.
Here are a few bullet-points, but I recommend the whole thing.
For RSV* (Respiratory Syncytial Virus) and SARS-1, bad vaccine response gets blamed on both Th-2 immunopathology and antibody complexes activating the complement system. This can lead to severe disease, including the infiltration of lung tissue by neutrophils (for both) and eosinophils (for RSV?).
For SARS-1, whole-S-protein vaccines seemed more likely to produce this detrimental enhanced immune response. S-fragments containing only the receptor binding domain offered protection, but did not produce this unwanted effect.
They are hoping that the same logic and fix goes for SARS-2, but are still waiting on the test results.
*Me: Side-tangent, but both SARS and RSV seem to be nasty lung infections with some propensity to form syncytia in severe disease. Heck, one of SARS-2's novel mutations seems likely to be involved in increased syncytia formation. However, the viruses are not close relatives, and they seem to show different preferences for which particular lung cells they reshape into syncytia. I find it interesting that they ran into a similar bad reaction here.
All very interesting, thank you for writing this up. Don't know enough to evaluate this, but it sounds plausible, and not very encouraging. Vaccines do not look promising, but perhaps further understanding of the disease will lead to other treatments that head off some of these complications.
Update 2020/04/02 : See second answer
V1.3
Here's a pass at my answers at present (2020/03/15)
Here's some of the papers I've looked at, and my interpretation (warning: this is messy).
Some (but not all) other coronaviruses, ex: FIP, have had vaccines that presented with this problem (imperfect antibodies against the vaccine resulted in increased severity of illness compared to baseline).
An in-vitro experiment suggesting that nCOV could use imperfect antibodies as a viable "anchor" for infecting white blood cells. Was tested using previous SARS-1 vaccines.
Interpretation: Assuming it's the same case among SARS subtypes, antibodies against the spike-pr
...Something weird is going on with white blood cell (WBC) counts, but I'm currently leaning towards believing something else is causing it.
Specifically, they're seeing T-cell lymphopenia & neutrophilia during acute infection (too few lymphocytes, too many neutrophils), along with blood-clot markers (high D-dimer, a thrombosis indicator, presages death).
T-cells seem to be the worst-hit WBC (hyper-activated, decreased numbers), and I'd have expected them to be close to immune to Fc-based ADE once mature; they only express the receptor while young.
This points to some other factor being at play, and leans me against ADE being a major determinant of individual disease severity. I still expect vaccine development to be challenging, and to come with risks of bad reactions if there is not extensive animal testing (since SARS-1 and MERS vaccines repeatedly ran into issues, including for a vaccine against N-protein that shouldn't trigger ADE in-vitro).
A few theories I've seen floating around for the blood results (I'm sure there's more out there):
The possibility of SARS-CoV-2 having Antibody-Dependent Enhancement (aka ADE) looked pretty real, to me.
If you're curious about the challenges of vaccine development for SARS-CoV-2, I recommend this article.
UPDATE: It looks like it isn't productively replicating in WBCs, but it probably is fusing with them and telling them to apoptose. Receptor uncertain, but they were checking T-cells specifically, which are exactly the WBCs that get severely depleted in severe COVID-19. They were in-vitro studies, but this mechanism matches the in-vivo results I'm seeing better, and I find the idea moderately convincing. (Article, h/t CellBioGuy's post mentioning it). SARS-2 is apparently much better at this than SARS-1.
Define ADE
Producing antibodies that are imperfect matches for one of these viruses (ex: optimized for another strain, or incompletely neutralizing) not only do not inactivate the virus, but instead get repurposed by the virus as a mechanism it can use to anchor and infect the cells that try to interact with those antibodies, most often immune cells.
Current conclusions
TL;DR: I think something else is having a larger impact than ADE on the immune system in severe COVID-19 disease. I have seen several theories, and listed some below. SARS-1 and MERS have both seen plenty of bad vaccine reactions that only show up at the animal-testing stage, and I still think vaccine development is going to be hard.
While I don't understand the upstream causes of this, Th-2 type activation has been extensively noted in both severe COVID-19 disease and bad vaccine reactions. Th-2 type immunopathology (roughly, allergy-like immune responses in lieu of virus-like immune responses) seems likely to play a large role in both complicating vaccine development, and influencing disease severity.
Something weird is going on with white blood cell counts, but I'm currently leaning towards believing it might be something else causing it. Specifically, they're seeing T-cell lymphopenia. T-cells seem to be the worst-hit WBC (hyper-activated, decreased numbers), and I'd have expected them to be close to immune to Fc-based ADE once mature; they only express the receptor while young.
SARS-1 and MERS vaccines both seem to have seen instances of bad reactions that required animal testing to become apparent. SARS-1 and SARS-2 exhibit ADE in-vitro against S-protein vaccines and not N-protein vaccines, but both S- and N-targeting vaccines sometimes had bad reactions in animal testing*. What I see as an in-vitro/in-vivo divergence boosts my impression that vaccine development will be challenging.
*For example, this mouse study with SARS-1 saw hypersensitivity reactions to several S-containing vaccine subtypes (whole virus, VLP, S-protein), while this paper tested S- or N- VRPs and found that their N-inoculation not only had had no protective effect, but made things worse when it "resulted in enhanced immunopathology... within the lungs" upon infection.
Going on the current human results and a tiny Macaque study with 4 monkeys, for SARS-CoV-2 it does appear that getting through the disease once does preclude or largely-preclude reinfection by the same strain. I don't feel I can weigh in on whether this will stay true.
A few theories trying to explain the blood results (I'm sure there's more):
While I don't understand the upstream causes of this, Th-2 type activation has been extensively noted in both severe COVID-19 disease and bad vaccine reactions. Going on both the frequency with which it comes up in these contexts, and commentary by experts, Th-2 type immunopathology (roughly, allergy-like immune responses in lieu of virus-like immune responses) seems likely to play a large role in both complicating vaccine development, and influencing disease severity.
Earlier thoughts
I've repeatedly had to update in the direction of it being plausible, and I currently think it's more-likely-than-not to be a factor that will complicate vaccine development.
However, there do exist viable alternative theories for a lot of what I'm seeing, some of which I couldn't rule out.
Related Questions
I wanted to consolidate research on this into one place, and am interested in if anyone has additional solid arguments for/against it.
I have a lot of questions about this, but lets boil it down to a few.