DeepMind's go AI, called AlphaGo, has beaten the European champion with a score of 5-0. A match against top ranked human, Lee Se-dol, is scheduled for March.
Games are a great testing ground for developing smarter, more flexible algorithms that have the ability to tackle problems in ways similar to humans. Creating programs that are able to play games better than the best humans has a long history
[...]
But one game has thwarted A.I. research thus far: the ancient game of Go.
This is a well-known problem, called reinforcement learning. It is a significant component in the reported results. (What happens in practice is that a network's ability to assign "credit" or "blame" for reward signals falls off exponentially with increasing delay. This is a significant limitation, but reinforcement learning is nevertheless very helpful given tight feedback loops.)
Yes, but as I wrote above, the problems of credit assignment, reward delay and noise are non-existent in this setting, and hence their work does not contribute at all to solving AI.