The Doomsday argument gives an anthropic argument for why we might expect doom to come reasonably soon. It's known that the Doomsday argument works under SSA, but not under SIA.
Ok, but since different anthropic probability theories are correct answers to different questions, what are the question versions of the Doomsday argument, and is the original claim correct?
No Doomsday on birth rank
Simplify the model into assuming there is a large universe (no Doomsday any time soon) with many, many future humans, and a small one (a Doomsday reasonably soon - within the next 200 billion people, say), with equal probability. In order to think in terms of frequencies, which comes more naturally to humans, we can imagine running the universe many, many times, each with the Doomsday chance.
There are roughly a 108.5 billion humans who have ever lived. So, asking:
- What proportion of people with birth rank 108.5 billion, live in a small universe (with a Doomsday reasonably soon)?
The answer to that question converges to , the SIA probability. Half of the people with that birth rank live in small universes, half in large universes.
Doomsday for time travellers
To get an SSA version of the problem, we can ask:
- What proportion of universes, where a randomly selected human has a birthrank of 108.5 billion, will be small (with a Doomsday reasonably soon)?
This will give an answer close to as it converges on the SSA probability.
But note that this is generally not the question that the Doomsday argument is posing. If there is a time traveller who is choosing people at random from amongst all of space and time - then if they happen to choose you, that is a bad sign for the future (and yet another reason you should go with them). Note that this is consistent with conservation of expected evidence: if the time traveller is out there but doesn't choose you, then this a (very mild) update towards no Doomsday.
But for the classical non-time-travel situation, the Doomsday argument fails.
Hi Stuart. It’s a while since I’ve posted.
Here’s one way of asking the question which does lead naturally to the Doomsday answer.
Consider two universes. They’re both infinite (or if you don’t like actual infinities, are very very large, so they both have a really huge number of civilisations).
In universe 1, almost all the civilisations die off before spreading through space, so that the average population of a civilisation through time is less than a trillion.
In universe 2, a fair proportion of the civilisations survive and grow to galaxy-size or bigger, so that the average population of a civilisation through time is much more than a trillion trillion.
Now consider two more universes. Universe 3 is like Universe 1 except that the microwave background radiation 14 billion years after Big Bang is 30K rather than 3K. Universe 4 is like Universe 2 again except for the difference in microwave background radiation. Both Universe 3 and Universe 4 are so big (or infinite) that they contain civilisations that believe the background radiation has temperature 3K because every measurement they’ve ever made of it has accidentally given the same wrong answer.
Here’s the question to think about.
Is there a sensible way of doing anthropics (or indeed science in general) that would lead us to conclude we are probably in Universe 1 or 2 (rather than Universe 3 or 4) without also concluding that we are probably in Universe 1 (rather than Universe 2)?
Thanks again for the useful response.
My initial argument was really a question “Is there any approach to anthropic reasoning that allows us to do basic scientific inference, but does not lead to Doomsday conclusions?” So far I’m skeptical.
The best response you’ve got is I think twofold.