The Doomsday argument gives an anthropic argument for why we might expect doom to come reasonably soon. It's known that the Doomsday argument works under SSA, but not under SIA.
Ok, but since different anthropic probability theories are correct answers to different questions, what are the question versions of the Doomsday argument, and is the original claim correct?
No Doomsday on birth rank
Simplify the model into assuming there is a large universe (no Doomsday any time soon) with many, many future humans, and a small one (a Doomsday reasonably soon - within the next 200 billion people, say), with equal probability. In order to think in terms of frequencies, which comes more naturally to humans, we can imagine running the universe many, many times, each with the Doomsday chance.
There are roughly a 108.5 billion humans who have ever lived. So, asking:
- What proportion of people with birth rank 108.5 billion, live in a small universe (with a Doomsday reasonably soon)?
The answer to that question converges to , the SIA probability. Half of the people with that birth rank live in small universes, half in large universes.
Doomsday for time travellers
To get an SSA version of the problem, we can ask:
- What proportion of universes, where a randomly selected human has a birthrank of 108.5 billion, will be small (with a Doomsday reasonably soon)?
This will give an answer close to as it converges on the SSA probability.
But note that this is generally not the question that the Doomsday argument is posing. If there is a time traveller who is choosing people at random from amongst all of space and time - then if they happen to choose you, that is a bad sign for the future (and yet another reason you should go with them). Note that this is consistent with conservation of expected evidence: if the time traveller is out there but doesn't choose you, then this a (very mild) update towards no Doomsday.
But for the classical non-time-travel situation, the Doomsday argument fails.
These are valid points, but we have wandered a bit away from the initial argument, and we're now talking about numbers that can't be compared (my money is on TREE(3) being smaller in this example, but that's irrelevant to your general point), or ways of truncating in the infinite case.
But we seem to have solved the finite-and-comparable case.
Now, back to the infinite case. First of all, there may be a correct decision even if probabilities cannot be computed.
If we have a suitable utility function, we may decide simply not to care about what happens in universes that are of the type 5, which would rule them out completely.
Or maybe the truncation can be improved slightly. For example, we could give each observer a bubble of radius 20 mega-light years, which is defined according to their own subjective experience: how many individuals do they expect to encounter within that radius, if they were made immortal and allowed to explore it fully.
Then we truncate by this subjective bubble, or something similar.
But yeah, in general, the infinite case is not solved.