The Doomsday argument gives an anthropic argument for why we might expect doom to come reasonably soon. It's known that the Doomsday argument works under SSA, but not under SIA.
Ok, but since different anthropic probability theories are correct answers to different questions, what are the question versions of the Doomsday argument, and is the original claim correct?
No Doomsday on birth rank
Simplify the model into assuming there is a large universe (no Doomsday any time soon) with many, many future humans, and a small one (a Doomsday reasonably soon - within the next 200 billion people, say), with equal probability. In order to think in terms of frequencies, which comes more naturally to humans, we can imagine running the universe many, many times, each with the Doomsday chance.
There are roughly a 108.5 billion humans who have ever lived. So, asking:
- What proportion of people with birth rank 108.5 billion, live in a small universe (with a Doomsday reasonably soon)?
The answer to that question converges to , the SIA probability. Half of the people with that birth rank live in small universes, half in large universes.
Doomsday for time travellers
To get an SSA version of the problem, we can ask:
- What proportion of universes, where a randomly selected human has a birthrank of 108.5 billion, will be small (with a Doomsday reasonably soon)?
This will give an answer close to as it converges on the SSA probability.
But note that this is generally not the question that the Doomsday argument is posing. If there is a time traveller who is choosing people at random from amongst all of space and time - then if they happen to choose you, that is a bad sign for the future (and yet another reason you should go with them). Note that this is consistent with conservation of expected evidence: if the time traveller is out there but doesn't choose you, then this a (very mild) update towards no Doomsday.
But for the classical non-time-travel situation, the Doomsday argument fails.
I get that this is a consistent way of asking and answering questions, but I’m not sure this is actually helpful with doing science.
If, say, universes 1 and 2 contain TREE(3) copies of me while universes 3 and 4 contain BusyBeaver(1000) then I still don’t know which I’m more likely to be in, unless I can somehow work out which of these vast numbers is vaster. Regular scientific inference is just going to completely ignore questions as odd as this, because it simply has to. It’s going to tell me that if measurements of background radiation keep coming out at 3K, then that’s what I should assume the temperature actually is. And I don’t need to know anything about the universe’s size to conclude that.
Returning to SIA, to conclude there are more copies of me in universe 1 and 2 (versus 3 or 4), SIA will have to know their relative sizes. The larger, the better, but not infinite please. And this is a major problem, because then SIA’s conclusion it dominated by how finite truncation is applied to avoid the infinite case.
Suppose we truncate all universes at the same large physical volume (or 4d volume) then there are strictly more copies of me in universe 1 and 2 than 3 and 4 (but about the same number in universes 1 and 2). That works so far - it is in line with what we probably wanted. But unfortunately this volume based truncation also favours universe 5-1:
5-1. Physics is nothing like it appears. Rather the universe is full of an extremely dense solid, performing a colossal number of really fast computations; a high fraction of which simulate observers in universe 1.
It’s not difficult to see that 5-1 is more favoured than 5-2, 5-3 or 5-4 (since the density of observers like me is highest in 5-1).
If we instead truncate universes at the same large total number of observers (or the same large total utility), then universe 1 now has more copies of me (because it has more civilisations in total). Universe 1 is favoured.
Or if I truncate universes at the same large number of total copies of me (because perhaps I don’t care very much about people who aren’t copies of me) then I can no longer distinguish between universes 1 to 4, or indeed 5-1 to 5-4.
So either way we’re back to the same depressing conclusion. However the truncation is done, universe 1 is going to end up preferred over the others (or perhaps universe 5-1 is preferred over the others), or there is no preference among any of the universes.