What I'm trying to figure out is, how to I determine whether a source I'm looking at is telling the truth? For an example, let's take this page from Metamed: http://www.metamed.com/vital-facts-and-statistics
At first glance, I see some obvious things I ought to consider. It often gives numbers for how many die in hospitals/year, but for my purposes I ought to interpret it in light of how many hospitals are in the US, as well as how many patients are in each hospital. I also notice that as they are trying to promote their site, they probably selected the data that would best serve that purpose.
So where do I go from here? Evaluating each source they reference seems like a waste of time. I do not think it would be wrong to trust that they are not actively lying to me. But how do I move from here to an accurate picture of general doctor competence?
I realize what you're getting at, and it is suspicious, I'm just saying that the probabilities you're trying to calculate for it aren't correct.
I'm also not sure what your alternate hypotheses are. There's no way that the 1979 data was fabricated to fit the 1995 percentages, is there? So any argument that casts doubt on the 1979 data being possible to begin with is going to penalize all possible alternate hypotheses. That's the problem with the normality assumption: assuming a normal distribution with any true mean makes the 1979 data unlikely, whether or not the percentages are suspiciously close.
I've just come across a more technical explanation than usual of "The Mendel-Fisher Controversy" which frames it as having been about formalizing an intuition of data "too good to be true" using chi-squared.
... (read more)