What I'm trying to figure out is, how to I determine whether a source I'm looking at is telling the truth? For an example, let's take this page from Metamed: http://www.metamed.com/vital-facts-and-statistics
At first glance, I see some obvious things I ought to consider. It often gives numbers for how many die in hospitals/year, but for my purposes I ought to interpret it in light of how many hospitals are in the US, as well as how many patients are in each hospital. I also notice that as they are trying to promote their site, they probably selected the data that would best serve that purpose.
So where do I go from here? Evaluating each source they reference seems like a waste of time. I do not think it would be wrong to trust that they are not actively lying to me. But how do I move from here to an accurate picture of general doctor competence?
Answered already - if the 1995 data set exists, then it pretty much has to be a survey of the entire spend of the US Department of Defense on software projects; a census, if you will. (Whether that is plausible or not is a separate question.)
Okay, let me try another one then. Suppose we entered this one into PredictionBook: "At some point before 2020, someone will turn up evidence such as a full-text paper, indicating that the 1995 Jarzombek data set exists, was collected independently of the 1979 GAO data set, and independently found the same frequencies."
What probability would you assign to that statement?
I'm not trying to set up any assumptions, I'm just trying to assess how plausible the claim is that the 1995 data set genuinely exists, as opposed to its being a memetic copy of the 1979 study. (Independently even of whether this was fraud, plagiarism, a honest mistake, or whatever.)
Very low. You're the only one that cares, and government archives are vast. I've failed to find versions of many papers and citations I'd like to have in the past.