ARC has published a report on Eliciting Latent Knowledge, an open problem which we believe is central to alignment. We think reading this report is the clearest way to understand what problems we are working on, how they fit into our plan for solving alignment in the worst case, and our research methodology.
The core difficulty we discuss is learning how to map between an AI’s model of the world and a human’s model. This is closely related to ontology identification (and other similar statements). Our main contribution is to present many possible approaches to the problem and a more precise discussion of why it seems to be difficult and important.
The report is available here as a google document. If you're excited about this research, we're hiring!
Q&A
We're particularly excited about answering questions posted here throughout December. We welcome any questions no matter how basic or confused; we would love to help people understand what research we’re doing and how we evaluate progress in enough detail that they could start to do it themselves.
Thanks to María Gutiérrez-Rojas for the illustrations in this piece (the good ones, blame us for the ugly diagrams). Thanks to Buck Shlegeris, Jon Uesato, Carl Shulman, and especially Holden Karnofsky for helpful discussions and comments.
In terms of the relationship to MIRI's visible thoughts project, I'd say the main difference is that ARC is attempting to solve ELK in the worst case (where the way the AI understands the world could be arbitrarily alien from and more sophisticated than the way the human understands the world), whereas the visible thoughts project is attempting to encourage a way of developing AI that makes ELK easier to solve (by encouraging the way the AI thinks to resemble the way humans think). My understanding is MIRI is quite skeptical that a solution to worst-case ELK is possible, which is why they're aiming to do something more like "make it more likely that conditions are such that ELK-like problems can be solved in practice."