ARC has published a report on Eliciting Latent Knowledge, an open problem which we believe is central to alignment. We think reading this report is the clearest way to understand what problems we are working on, how they fit into our plan for solving alignment in the worst case, and our research methodology.
The core difficulty we discuss is learning how to map between an AI’s model of the world and a human’s model. This is closely related to ontology identification (and other similar statements). Our main contribution is to present many possible approaches to the problem and a more precise discussion of why it seems to be difficult and important.
The report is available here as a google document. If you're excited about this research, we're hiring!
Q&A
We're particularly excited about answering questions posted here throughout December. We welcome any questions no matter how basic or confused; we would love to help people understand what research we’re doing and how we evaluate progress in enough detail that they could start to do it themselves.
Thanks to María Gutiérrez-Rojas for the illustrations in this piece (the good ones, blame us for the ugly diagrams). Thanks to Buck Shlegeris, Jon Uesato, Carl Shulman, and especially Holden Karnofsky for helpful discussions and comments.
This is because of the remark on ensembling---as long as we aren't optimizing for scariness (or diversity for diversity's sake), it seems like it's way better to have tons of predictors and then see if any of them report tampering. So adding more techniques improves our chances of getting a win. And if the cost of fine-tuning a reporters is small relative to the cost of training the predictor, we can potentially build a very large ensemble relatively cheaply.
(Of course, having more techniques also helps because you can test many of them in practice and see which of them seem to really help.)
This is also true for data---I'd be scared about generating a lot of riskier data, except that we can just do both and see if either of them reports tampering in a given case (since they appear to fail for different reasons).
I believe this in a few cases (especially combining "compress the predictor," imitative generalization, penalizing upstream dependence, and the kitchen sink of consistency checks) but mostly the stacking is good because ensembling means that having more and more options is better and better.
I don't think the kind of methodology used in this report (or by ARC more generally) is very well-equipped to answer most of these questions. Once we give up on the worst case, I'm more inclined to do much messier and more empirically grounded reasoning. I do think we can learn some stuff in advance but in order to do so it requires getting really serious about it (and still really wants to learn from early experiments and mostly focus on designing experiments) rather than taking potshots. This is related to a lot of my skepticism about other theoretical work.
I do expect the kind of research we are doing now to help with ELK in practice even if the worst case problem is impossible. But the particular steps we are taking now are mostly going to help by suggesting possible algorithms and difficulties; we'd then want to give those as one input into that much messier process in order to think about what's really going to happen.
I think this is plausible for complexity and to a lesser extent for computation time. I don't think it's very plausible for the most exciting regularizers, e.g. a good version of penalizing dependence on upstream nodes or the versions of computation time that scale best (and are really trying to incentivize the model to "reuse" inference that was done in the AI model). I think I do basically believe the arguments given in those cases, e.g. I can't easily see how translation into the human ontology can be more downstream than "use the stuff to generate observations then parse those observations."