ARC has published a report on Eliciting Latent Knowledge, an open problem which we believe is central to alignment. We think reading this report is the clearest way to understand what problems we are working on, how they fit into our plan for solving alignment in the worst case, and our research methodology.
The core difficulty we discuss is learning how to map between an AI’s model of the world and a human’s model. This is closely related to ontology identification (and other similar statements). Our main contribution is to present many possible approaches to the problem and a more precise discussion of why it seems to be difficult and important.
The report is available here as a google document. If you're excited about this research, we're hiring!
Q&A
We're particularly excited about answering questions posted here throughout December. We welcome any questions no matter how basic or confused; we would love to help people understand what research we’re doing and how we evaluate progress in enough detail that they could start to do it themselves.
Thanks to María Gutiérrez-Rojas for the illustrations in this piece (the good ones, blame us for the ugly diagrams). Thanks to Buck Shlegeris, Jon Uesato, Carl Shulman, and especially Holden Karnofsky for helpful discussions and comments.
Generally we are asking for an AI that doesn't give an unambiguously bad answer, and if there's any way of revealing the facts where we think a human would (defensibly) agree with the AI, then probably the answer isn't unambiguously bad and we're fine if the AI gives it.
There are lots of possible concerns with that perspective; probably the easiest way to engage with them is to consider some concrete case in which a human might make different judgments, but where it's catastrophic for our AI not to make the "correct" judgment. I'm not sure what kind of example you have in mind and I have somewhat different responses to different kinds of examples.
For example, note that ELK is never trying to answer any questions of the form "how good is this outcome?"; I certainly agree that there can also be ambiguity about questions like "did the diamond stay in the room?" but it's a fairly different situation. The most relevant sections are narrow elicitation and why it might be sufficient which gives a lot of examples of where we think we can/can't tolerate ambiguity, and to a lesser extent avoiding subtle manipulation which explains how you might get a good outcome despite tolerating such ambiguity. That said, there are still lots of reasonable objections to both of those.