From Costanza's original thread (entire text):
This is for anyone in the LessWrong community who has made at least some effort to read the sequences and follow along, but is still confused on some point, and is perhaps feeling a bit embarrassed. Here, newbies and not-so-newbies are free to ask very basic but still relevant questions with the understanding that the answers are probably somewhere in the sequences. Similarly, LessWrong tends to presume a rather high threshold for understanding science and technology. Relevant questions in those areas are welcome as well. Anyone who chooses to respond should respectfully guide the questioner to a helpful resource, and questioners should be appropriately grateful. Good faith should be presumed on both sides, unless and until it is shown to be absent. If a questioner is not sure whether a question is relevant, ask it, and also ask if it's relevant.
Meta:
- How often should these be made? I think one every three months is the correct frequency.
- Costanza made the original thread, but I am OpenThreadGuy. I am therefore not only entitled but required to post this in his stead. But I got his permission anyway.
Separate concern: Why constructible real numbers are only finitely higher than Q? Cannot it be that there are some elements of (say) 2^Q that cannot be pinpointed until a much higher ordinal?
Of course, there is still a formula that specifies a high enough ordinal to contain all members of R that are actually constructible.
I figured out the following after passing the Society of Actuaries exam on probability (woot!) when I had time to follow the reference in the grandparent:
The proof that |R|=|2^omega| almost certainly holds in L. And gjm may have gotten confused in part because L(omega+1) seems like a natural analog of 2^omega. It contains every subset of omega we can define using finitely many parameters from earlier stages. But every subset of omega qualifies as a subset of every later stage L(a>omega), so it can exist as an element in L(a+1) if we can define it using ... (read more)