Planned summary for the Alignment Newsletter:
Interpretability seems to be useful for a wide variety of AI alignment proposals. Presumably, different proposals require different kinds of interpretability. This post analyzes this question to allow researchers to prioritize across different kinds of interpretability research.
At a high level, interpretability can either make our current experiments more informative to help us answer _research questions_ (e.g. “when I set up a <@debate@>(@AI safety via debate@) in this particular way, does honesty win?”), or it could be used as part of an alignment technique to train AI systems. The former only have to be done once (to answer the question), and so we can spend a lot of effort on them, while the latter must be efficient in order to be competitive with other AI algorithms.
They then analyze how interpretability could apply to several alignment techniques, and come to several tentative conclusions. For example, they suggest that for recursive techniques like iterated amplification, we may want comparative interpretability, that can explain the changes between models (e.g. between distillation steps, in iterated amplification). They also suggest that by having interpretability techniques that can be used by other ML models, we can regularize a trained model to be aligned, without requiring a human in the loop.
Planned opinion:
I like this general direction of thought, and hope that people continue to pursue it, especially since I think interpretability will be necessary for inner alignment. I think it would be easier to build on the ideas in this post if they were made more concrete.
An important consideration is whether the interpretability research which seems useful for alignment is research which we expect the mainstream ML research community to work on and solve suitably. Do you see a way of incentivizing the RL community to change this? (If possible, that would seem like a more effective approach than doing it "ourselves".)
There’s little research which focuses on interpreting reinforcement learning agents [...]. There is some work in DeepMind's safety team on this, isn't there? (Not to dispute the overall point though, "a part of DeepMind's safety team" is rather small compared to the RL community :-).)
Nitpicks and things I didn't get:
If we believe a particular proposal is more or less likely than others to produce aligned AI, then we would preferentially work on interpretability research which we believe will help this proposal other work which wouldn't, as it wouldn't be as useful.
(Note: you're quoting your response as well as the sentence you've meant to be quoting (and responding to), which makes it hard to see which part is your writing. I think you need 2 newlines to break the quote formatting).
Do you see a way of incentivizing the RL community to change this? (If possible, that would seem like a more effective approach than doing it "ourselves".)
I think this is kind of the same as how do we incentivise the wider ML community to think safety is important? I don't know if there's anything specific about the RL community which makes it a different case.
There is some work in DeepMind's safety team on this, isn't there? (Not to dispute the overall point though, "a part of DeepMind's safety team" is rather small compared to the RL community :-).)
I think there is too, and I think there's more research in general than there used to be. I think the field of interpretability (and especially RL) interpretability is very new, pre-paradigmatic, which can make some of the research not seem useful or relevant.
It was a bit hard to understand what you mean by the "research questions vs tasks" distinction. (And then I read the bullet point below it and came, perhaps falsely, to the conclusion that you are only after "reusable piece of wisdom" vs "one-time thing" distinction.)
I'm still uncertain whether tasks is the best word. I think we want reusable pieces of wisdom as well as one-time things, and I don't know whether that's the distinction I was aiming for. It's more like "answer this question once, and then we have the answer forever" vs "answer this question again and again with different inputs each time". In the first case interpretability tools might enable researchers to answer the question easier. In the second our interpretability tool might have to answer the question directly in an automatic way.
If we believe a particular proposal is more or less likely than others to produce aligned AI, then we would preferentially work on interpretability research which we believe will help this proposal over research which wouldn't, as it wouldn't be as useful.
I have changed the sentence, I had other instead of over.
Introduction
We’ve previously written about what interpretability research might be. In this post we think about how different kinds of interpretability research (even loosely formulated) can help AI alignment research agendas and proposals. It seems that there are meaningful differences in the kind of tools and research different agendas would benefit from, and we aim to make these differences clearer. This is useful in helping prioritise what kinds of interpretability research are likely worth doing.
Framing
In solving the problem of AI Alignment, we’ll need to both answer research questions (e.g Is it optimal to tell the truth in a debate game?) and work out how to complete tasks reliably and quickly (e.g. Given an AI, tell me whether it will allow us to turn it off).
Interpretability research will be useful for alignment by enabling and enhancing other research proposals and agendas, and so one of the best ways of thinking about what kind of interpretability research to do is to think about other proposals and how specifically interpretability can help them. We see three broad ways interpretability could enable other proposals:
Developing a more formal theory of interpretability and explainability could help with avenues such as open source game-theory and mechanistic transparency, where some sense of Interpretation or Understanding is required in an algorithmic sense.
Theoretical exploration of components or tools, such as exploring viable general interpretation methods and their desiderata, future strong versions, promises & limits. This will help in understanding how we may be able to use interpretability in the future in other proposals, in scenarios we don’t yet encounter or haven’t considered. This side of interpretability is likely valuable long-term and neglected by the current mainstream ML research. In a sense this post is the result of trying to do this kind of research.
Enabling or amplifying the insights gained from experiments performed by researchers (both alignment and mainstream) today, helping them develop answers to their proposals’ research questions.
Different types of interpretability can help different areas of AI alignment
As expressed in the previous section, interpretability can help with a wide range of different research agendas and proposals in different ways. We want to give a few examples examining this idea, and then draw some general conclusions from the patterns expressed in these examples.
Iterated Distillation and Amplification (IDA)
There are a variety of research questions that this proposal will need to tackle to succeed:
How do we build a Distillation process that preserves alignment?
Does Distillation of form X preserve alignment?
What properties does distillation of form X preserve?
How do we build an amplification process that increases the capabilities of the AI while not diminishing the alignment?
etc. etc etc.
A key problem which we need to be able to solve for IDA to be safe is to consistently be able to validate whether the distilled agent’s behaviour is faithful to the overseer's behaviour (or the behaviour the overseer aims to incentivise). We think interpretability research is a key way in which we could perform this validation. Methods which work with the form of agent produced by IDA would be necessary; this might be RL agents or another paradigm not yet encountered. An interesting feature of these methods would be that they only need to work comparatively: they might not need to say something about the distilled agent’s behaviour in isolation. We can use our method to validate the changes at each iteration, and by assumption we have faith in the initial agent, so by similar reasoning to IDA working in the first place, we’d be happy with the final agent even if we can’t completely understand it in isolation.
In terms of the research questions which interpretability might be able to help with, If we start doing experiments with amplification and distillation of AIs, then using interpretability methods on the produced agents might help us generate good intuitions or even proofs of how different properties are changed in the amplification and distillation stages. This is quite generic, and It’s plausible there’s limited work to be done in the true case, as a key part of the process is the human (or collection of humans) being amplified. Human interpretability is a whole different subject from AI interpretability, and while there might be some overlap (systems biology & neuroscience and deep learning have learned from each other before), it’s uncertain whether that kind of work is necessary.
AI Safety Via Debate
For an explanation of this agenda, see here and here. For debate, there's a broad range of research questions which would need to be answered, including questions (often related to the ones in IDA) about whether Debate works and produces safe AI, such as Does debate incentivise truth-seeking behaviour or just maximally persuasive behaviour?. We currently think it’s less likely that AI interpretability can help with these kinds of questions; game theory and the social science seem best posed to answer them.
It also includes tasks we'll need to be able to perform repeatedly and reliably. In the current technical research on debate, the debate game is often set up with one debater arguing for a truthful statement, and the other arguing against said statement. In this setting, there are questions such as
Is this debater telling the truth or lying?
Is this debater honestly presenting the evidence it's presenting or not?
I believe interpretability methods can help the judges in the debate games answer these questions more effectively, by enabling them to understand what is influencing a debater's action at a specific time. Work such as Influence Functions could enable us to see which training data is most impacting the current AI's decision, which could give us insight into what the agent's current motivation is (i.e. if the most influential training data was a time when the debater lied and got away with it, winning the debate, it seems more likely that the debater is currently lying). In the general case, the debaters might not know the truth value of the statement they’re arguing for. Even in this case if our interpretability methods can spot when an agent is trying to be deceitful we can punish this, to try to encourage truth-seeking behaviour. (NOTE: This depends a lot on the operationalisation of "trying to be deceitful", and it’s unclear whether using interpretability in this way would encourage truth-seeking behaviour or just cleverer deceitful behaviour). In both the case of knowing the truth value of the debate and not, if the judge is another AI, then our interpretability methods would only need to enable that AI to gain insight, not humans.
Other methods may also be able to help with these kinds of problems; If we can understand the internal structure of the debater in some way, then see which parts of the internals are activated when it acts in a certain way (effectively an MRI for a neural network), then we might be able to understand when it's lying or telling the truth.
In general these methods need only be local (applied to a debater's actions at specific time steps) to still enhance and empower the judge.
Recursive Reward Modelling
See here for an explanation of this alignment proposal. The main idea is that we learn a reward model from humans which we can then use to teach AI. We recurse on this setup by using the AI we've trained so far to help assess the behaviour of the new AI, to try and help us understand whether it's behaviour is good or bad, so the reward model we learn is as good as possible.
In terms of research questions that this method has, they’re in a similar vein to the IDA proposal, but with more of a focus on AIs in the recursion. This might make it more amenable to interpretability methods helping us to find out whether reward modelling is a solution which works well for creating strong aligned AI. If we’re able to build reward models and examine their internals, we can see how well reward modelling tends to work in different scenarios. On the recursive side, having a consistent insight into the differences between the successive reward models we create would be useful. As in IDA, we may only need to look at the difference between reward models and AIs rather than understanding them on their own.
In terms of tasks interpretability could help with, one possibility is interpretability methods to be used by the helper AI in inspecting the behaviour of the current AI, to induce a loss function not just on it's behaviour but also it's internal reasoning. If we had interpretability methods which are strong enough to give this kind of insight then this could be a strong increase in the effectiveness of this method. We would need transparency techniques to allow the helper AI to get a good enough insight on the current AI’s reasoning to induce some kind of reward signal, and methods which actually generate this insight. In this case humans might not ever see the output of the interpretability method, as it’s just used by the reward model to judge the AI’s reasoning.
Mesa Optimisation
For an explanation of mesa optimisation, see here. This is one of the most convincing (I believe) examples of how interpretability can be useful, and is concerned with the problem of inner alignment. The classic question here is something like Does this agent contain an unaligned mesa-optimiser?. More generally, Does this training process produce agents which contain unaligned mesa-optimisers?.
I think the research questions around mesa optimisation are ones that interpretability methods will definitely help us solve; this problem is about how the training procedure of an Ai unfolds, and how the internals of the AI reason. Insight could be gained on these kinds of problems through a broad range of methods: Influence Functions, Loss Change Allocation and other methods which introspect on the training procedure seem particularly useful. We think transparency approaches (such as those motivated in An analytical perspective on AI alignment) also have a good chance of enabling the insights we want in a way which doesn't require running the agent (in simulation or not) as it doesn't aim to produce insight from behavioural examination.
Principally, sufficiently strong and farsighted optimizers should not produce unaligned mesa-optimisers, as doing so would usually not be optimal in the long term. Insofar as interpretability helps us (or the advanced optimisation loops we build) with predicting model behaviour in novel situations, it could help us to filter out some unaligned mesa-optimizers. There are two caveats: First, this assumes that our optimizers are already quite powerful without the interpretability method, as even unaligned mesa-optimizers might improve generalization compared to weaker models that do not utilize any optimization. Second, filtering some unaligned mesa-optimizers could turn out net-negative, if the remaining ones are especially malicious, since they are relatively more likely to be selected after filtering.
Proposal-agnostic ideas
There are some tasks interpretability might help us with which are proposal-agnostic. We won’t go into a lot of detail on these kinds of ideas here, as I’m focusing on differences between proposals, but we thought it was worth mentioning two ideas.
An often proposed idea for how interpretability could help with alignment it through auditing final models produced by any kind of method. In this setting, once we have produced a model, before deploying it to the real world, we first inspect it with our interpretability tools to make sure it’s not misaligned. This capability probably won’t solve AI alignment on it’s own, as if we discover the AI is misaligned, it doesn’t provide us with a next step apart from training another AI and hoping this one works out. It’s possible that it might be enough, if misaligned models are a small part of the model space, and retraining can quickly get us to an aligned model, but this seems unlikely.
A second idea, put forward by Chris Olah, is that interpretability can improve the field of ML, making it a more rigorous, scientific discipline which tries to truly understand the models we’re creating, rather than just pushing for the best results. This is a long shot, but if we achieved this kind of fundamental reorientation, it seems like it would be very beneficial for AI safety and alignment, as we’d understand how our models worked a lot more (and research which built understanding would be rewarded), rather than just creating really good optimisers with little insight into how they work and what behaviour they’ll have.
Conclusions and Patterns
Recursive approaches could benefit from methods which compare models, which might be easier to create than methods which look at a single model in isolation
Interpretability seems like it may be able to create a kind of regularisation or optimisation pressure on a trained model to be aligned, and this would be useful in a variety of proposals. In some of these settings a human never has to see the result of the interpretability method.
For research questions, proposals which can produce experiments instantiated with ML tools can benefit more from the insights gained from applying interpretability methods to these experiments.
Most agendas want methods which give a global view of the AI’s reasoning and internal representations. These kinds of methods will probably be harder to create, but more likely to be helpful. Debate seems like it could still benefit from just local explanations or interpretations.
In general, most agendas focus on creating or understanding agents. The current paradigm for this kind of research is reinforcement learning, and so more research focusing on interpreting RL agents and training procedures could benefit alignment in general.
These differences can help you decide which kinds of interpretability research to work on
What does all this mean? What's the use in thinking about all of this? We believe this kind of thinking is useful to help prioritise which kinds of research we might want to pursue, both within interpretability and when considering between interpretability and other related fields. If we believe a particular proposal is more or less likely than others to produce aligned AI, then we would preferentially work on interpretability research which we believe will help this proposal over research which wouldn't, as it wouldn't be as useful. These thoughts would of course also be influenced by what AI timelines you find most plausible, as this influences which AI Alignment proposal seems most likely to succeed, or which proposal most needs to succeed.
An important consideration is whether the interpretability research which seems useful for alignment is research which we expect the mainstream ML research community to work on and solve suitably. If this would happen, then it seems comparatively better to work on other alignment research which is just as necessary but isn’t being worked on by the mainstream. Currently however, we don’t think this is the case. There’s little research which focuses on interpreting reinforcement learning agents (which seems very relevant to AI Alignment), or with an explicit focus on producing methods which scale to stronger AIs and are aimed at solving the tasks we want to focus on in AI Alignment.
Overall, we think interpretability research, if targeted towards methods and insights which will help with AI alignment proposals or agendas, is a useful set of research directions to pursue. I’ve talked about a few of these directions in this post, but no doubt there are more.