// ODDS = YEP:NOPE
YEP, NOPE = MAKE UP SOME INITIAL ODDS WHO CARES
FOR EACH E IN EVIDENCE
YEP *= CHANCE OF E IF YEP
NOPE *= CHANCE OF E IF NOPE
The thing to remember is that yeps and nopes never cross. The colon is a thick & rubbery barrier. Yep with yep and nope with nope.
bear : notbear =
1:100 odds to encounter a bear on a camping trip around here in general
* 20% a bear would scratch my tent : 50% a notbear would
* 10% a bear would flip my tent over : 1% a notbear would
* 95% a bear would look exactly like a fucking bear inside my tent : 1% a notbear would
* 0.01% chance a bear would eat me alive : 0.001% chance a notbear would
As you die you conclude 1*20*10*95*.01 : 100*50*1*1*.001 = 190 : 5 odds that a bear is eating you.
You can just try to estimate the base rate of a bear attacking your tent and eating you, then estimate the base rate of a thing that looks identical to a bear attacking your tent and eating you, and compare them. Maybe one in a thousand tents get attacked by a bear, and 1% of those tent attacks end with the bear eating the person inside. The second probability is a lot harder to estimate, since it mostly involves off-model surprises like "Bigfoot is real" and "there is a serial killer in these woods wearing a bear suit," but I'd have trouble seeing how it could be above one in a billion. (Unless we're including possibilities like "this whole thing is just a dream" - which actually should be your main hypothesis.)
In general, when you're dealing with very low or very high probabilities, I'd recommend you just try to use your intuition instead of trying to calculate everything out explicitly.* The main reason is this: if you estimate a probability as being 30% instead of 50%, it won't usually affect the result of the calculation that much. On the other hand, if you estimate a probability as being 1/10^5 instead of 1/10^6, it can have an enormous impact on the end result. However, humans are a lot better at intuitively telling apart 30% from 50% than they are at telling apart 1/10^5 from 1/10^6.
If you try to do explicit calculations about probabilities that are pretty close to 1:1, you'll probably get a pretty accurate result; if you try to do explicit calculations about probabilities that are several orders of magnitude away from each other, you'll probably be off by at least one order of magnitude. In this case, you calculated that even if a person on a camping trip is being eaten by something that looks identical to a bear, there's still about a 2.6% chance that it's not a bear. When you get a result that ridiculous, it doesn't mean there's a nonbear eating you, it means you're doing the math wrong.
*The situations in which you can get useful information from an explicit calculation on low probabilities are situations where you're fine with being off by substantial multiplicative factors. Like, if you're making a business decision where you're only willing to accept a <5% chance of something happening, and you calculate that there's only a one in a trillion chance, then it doesn't actually matter whether you were off by a factor of a million to one. (Of course, you still do need to check that there's no way you could be off by an even larger factor than that.)