In response to falenas108's "Ask an X" thread. I have a PhD in experimental particle physics; I'm currently working as a postdoc at the University of Cincinnati. Ask me anything, as the saying goes.
This is an experiment. There's nothing I like better than talking about what I do; but I usually find that even quite well-informed people don't know enough to ask questions sufficiently specific that I can answer any better than the next guy. What goes through most people's heads when they hear "particle physics" is, judging by experience, string theory. Well, I dunno nuffin' about string theory - at least not any more than the average layman who has read Brian Greene's book. (Admittedly, neither do string theorists.) I'm equally ignorant about quantum gravity, dark energy, quantum computing, and the Higgs boson - in other words, the big theory stuff that shows up in popular-science articles. For that sort of thing you want a theorist, and not just any theorist at that, but one who works specifically on that problem. On the other hand I'm reasonably well informed about production, decay, and mixing of the charm quark and charmed mesons, but who has heard of that? (Well, now you have.) I know a little about CP violation, a bit about detectors, something about reconstructing and simulating events, a fair amount about how we extract signal from background, and quite a lot about fitting distributions in multiple dimensions.
That is a good question. There is more than one way to formulate the answer in nonmathematical terms, but I'm not sure which would be the most illuminating.
One is that the electromagnetic force (as opposed to electromagnetic radiation) is transmitted by virtual photons, not real photons. No real, detectable photons escape a charged black hole, but the exchange of virtual photons between a charge inside and one outside results in an electric force. Virtual particles are not restricted by the rules of real particles and can go "faster than light". (Same for virtual gravitons, which transmit the gravitational force.) The whole talk of virtual particles is rather heuristic and can be misleading, but if you are familiar with Feynman diagrams you might buy this explanation.
A different explanation that does not involve quantum theory: Charge and mass (in the senses relevant here) are similar in that they are defined through measurements done in the asymptotic boundary of a region. You draw a large sphere at large distance from your black hole or other object, define a particular integral of (respectively) the gravitational or the electromagnetic field there, and its result is defined as the total mass/charge enclosed. So saying a black hole has charge is just equivalent to saying that it is a particular solution of the coupled Einstein-Maxwell equations in which the electromagnetic field at large distances takes such-and-such form.
Notice that whichever explanation you pick, the same explanation works for charge and mass, so the peculiarity of gravity not being part of the energy-momentum tensor that I mentioned above is not really relevant for why the black hole attracts you. Where have you read this?
Hi Alejandro, I just remembered I hadn’t thanked you for the answer. So, thanks! :-)
I don’t remember where I’ve seen the explanation (that gravity works through event horizons because gravitons themselves are not affected), it seemed wrong so I didn’t actually give a lot of attention to it. I’m pretty sure it wasn’t a book or anything official, probably just answers on “physics forums” or the like.
For some reason, I’m not quite satisfied with the two views you propose. (I mean in the “I really get it now” way, intellectually I’m quite satisfied that the eq... (read more)