In response to falenas108's "Ask an X" thread. I have a PhD in experimental particle physics; I'm currently working as a postdoc at the University of Cincinnati. Ask me anything, as the saying goes.
This is an experiment. There's nothing I like better than talking about what I do; but I usually find that even quite well-informed people don't know enough to ask questions sufficiently specific that I can answer any better than the next guy. What goes through most people's heads when they hear "particle physics" is, judging by experience, string theory. Well, I dunno nuffin' about string theory - at least not any more than the average layman who has read Brian Greene's book. (Admittedly, neither do string theorists.) I'm equally ignorant about quantum gravity, dark energy, quantum computing, and the Higgs boson - in other words, the big theory stuff that shows up in popular-science articles. For that sort of thing you want a theorist, and not just any theorist at that, but one who works specifically on that problem. On the other hand I'm reasonably well informed about production, decay, and mixing of the charm quark and charmed mesons, but who has heard of that? (Well, now you have.) I know a little about CP violation, a bit about detectors, something about reconstructing and simulating events, a fair amount about how we extract signal from background, and quite a lot about fitting distributions in multiple dimensions.
Wouldn't Gibbs free energy be more appropriate? pV should be available for work too.
I find myself slightly confused by that definition. Energy in straight quantum mechanics (or classical Newtonian mechanics) is a torsor. There is no preferred origin, and adding any constant to all the states changes the evolution not at all. It therefore must not change the extractable work. So the free energies are clearly incorrectly defined, and must instead be defined relative to the ground state. In which case, yes, you could extract all the energy above that, if you knew the precise state, and could manipulate the system finely enough.
1) Meh.
2) Right. I clarified this two posts down: "the free energy change between two states is the work you can extract by moving between those two states." So just like for energy, the zero point of free energy can be shifted around with no (classical) consequences, and what really matters (like what comes out of engines and stuff) is the relative free energy.