This is a report on our work in AISC Virtual 2023.
For AISC 2023, our team looked into the foundations of soft optimization. Our goal at the beginning was to investigate variations of the original quantilizer algorithm, in particular by following intuitions that uncertainty about goals can motivate soft optimization. We ended up spending most of the time discussing the foundations and philosophy of agents, and exploring toy examples of Goodhart’s curse.
Our discussions centered on the form of knowledge about the utility function that an agent must have, such that expected utility maximization isn’t the correct procedure (from the designer's perspective). With well-calibrated beliefs about the true utility function, it’s always optimal to... (read 4279 more words →)