greghb
greghb has not written any posts yet.

Fwiw, I think nostalgebraist's recent post hit on some of the same things I was trying to get at, especially around not having adequate testing to know how smart the systems are getting -- see the section on what he calls (non-)ecological evaluation.
Re: humans/brains, I think what humans are a proof of concept of is that, if you start with an infant brain, and expose it to an ordinary life experience (a la training / fine-tuning), then you can get general intelligence. But I think this just doesn't bear on the topic of Bio Anchors, because Bio Anchors doesn't presume we have a brain, it presumes we have transformers. And transformers don't know what to do with a lifetime of experience, at least nowhere near as well as an infant brain does. I agree we might learn more about AI from examining humans! But that's leaving the Bio Anchors framing of "we just need... (read 752 more words →)
Yes, good questions, but I think there are convincing answers. Here's a shot:
1. Some kinds of data can be created this way, like parallel corpora for translation or video annotated with text. But I think it's selection bias that it seems like most cases are like this. Most of the cases we're familiar with seem like this because this is what's easy to do! But transformative tasks are hard, and creating data that really contains latent in it the general structures necessary for task performance, that is also hard. I'm not saying research can't solve it, but that if you want to estimate a timeline, you can't consign this part of the... (read 586 more words →)
Caveating that I did a lot of skimming on both Bio Anchors and Eliezer's response, the part of Bio Anchors that seemed weakest to me was this:
To be maximally precise, we would need to adjust this probability downward by some amount to account for the possibility that other key resources such as datasets and environments are not available by the time the computation is available
I think the existence of proper datasets/environments is a huge issue for current ML approaches, and you have to assign some nontrivial weight to it being a much bigger bottleneck than computational resources. Like, we're lucky that GPT-3 is trained with the LM objective (predict the next word)... (read more)
This part really resonates:
as does the ecological "road not taken". But I think part of this puzzle is that, in fact, there aren't adequate ecological measures of linguistic competence, vs. tasks that may be difficult but are always narrow and you never feel good about them being difficult for the right reasons. There... (read more)