Wamba-Ivanhoe
Wamba-Ivanhoe has not written any posts yet.

Wamba-Ivanhoe has not written any posts yet.

I posit that the supposition that "At some point one of those groups will be devoured by snakes" is erroneous. There exists a non-zero chance that the game goes on forever and infinitely many people win.
The issue is that the quoted supposition collapses the probability field to only those infinitely many universes where the game stops, but there is this one out of infinitely many universes where the game never stops and it has infinitely many winners so we end up with residual term of . We cannot assume this term is zero just because of the in the denominator and disregard this universe.
For an arbitrary player base of players, the maximum possible rounds that the game can run is then the whole number part of , we will denote the maximum possible number of rounds as .
We denote the probability of snake-eyes as . In the case of the Daniel Reeves market .
Let the probability density of the game ending in snake-eyes on round n then .
The sum of the probability density of the games which end with snake eyes is
The sum of the probability densities of the games ending in snake-eyes is less than which means that the rounds ending in snake-eyes does not... (read 465 more words →)
Because all scenarios have P(red) >= 50%, the combined P(red) >= 50%. This holds for both SIA and SSA.
The statement above is only true if the stopping condition is that "If we get to the batch we will not roll dice but instead only make snakes with red eyes", or in other words must have been selected because it resulted in red eyes.
Where is selected as the stopping condition independent of the dice result, the fate of batch is still a dice roll so there exists a scenario. Any scenario stopping less than must have stopped because snakes with red eyes were made, however batch could result either in snakes with red eyes with probability or snakes with blue eyes with probability .... (read more)
Going back to each of the finite cases, we can condition the finite case by the population that can support up to m rounds. iteration by the population size presupposes nothing about the game state and we can construct the Bayes Probability table for such games.
For a population M that supports at most m rounds of play the probability that a player will be in any given round n<=m is 2nM and the sum of the probabilities that a player is in round n from n=1→m is m∑n=12n−1M=2m−1M; We can let M=2m−1 because any additional population will not be sufficient to support an m+1 round until the population reaches 2m+1−1, which is just trading m for m+1 where we ultimately will take the limit anyhow.
The horizontal axis of the Bays Probability table... (read 414 more words →)