Interesting anecdote on "von Neumann's onion" and his general style, from P. R. Halmos' The Legend of John von Neumann:
...Style. As a writer of mathematics von Neumann was clear, but not clean; he was powerful but not elegant. He seemed to love fussy detail, needless repetition, and notation so explicit as to be confusing. To maintain a logically valid but perfectly transparent and unimportant distinction, in one paper he introduced an extension of the usual functional notation: along with the standard φ(x) he dealt also with something denoted by φ((x)). The hair that was split to get there had to be split again a little later, and there was φ(((x))), and, ultimately, φ((((x)))). Equations such as
(φ((((a))))^2 = φ(((a))))
have to be peeled before they can be digested; some irreverent students referred to this paper as von Neumann’s onion.
Perhaps one reason for von Neumann’s attention to detail was that he found it quicker to hack through the underbrush himself than to trace references and see what others had done. The result was that sometimes he appeared ignorant of the standard literature. If he needed facts, well-known facts, from Lebesgue integration theory, he waded in, defi
I have this experience with @ryan_greenblatt -- he's got an incredible ability to keep really large and complicated argument trees in his head, so he feels much less need to come up with slightly-lossy abstractions and categorizations than e.g. I do. This is part of why his work often feels like huge, mostly unstructured lists. (The lists are more unstructured before his pre-release commenters beg him to structure them more.) (His code often also looks confusing to me, for similar reasons.)
While Dyson's birds and frogs archetypes of mathematicians is oft-mentioned, David Mumford's tribes of mathematicians is underappreciated, and I find myself pointing to it often in discussions that devolve into "my preferred kind of math research is better than yours"-type aesthetic arguments:
...... the subjective nature and attendant excitement during mathematical activity, including a sense of its beauty, varies greatly from mathematician to mathematician... I think one can make a case for dividing mathematicians into several tribes depending on what most strongly drives them into their esoteric world. I like to call these tribes explorers, alchemists, wrestlers and detectives. Of course, many mathematicians move between tribes and some results are not cleanly part the property of one tribe.
- Explorers are people who ask -- are there objects with such and such properties and if so, how many? They feel they are discovering what lies in some distant mathematical continent and, by dint of pure thought, shining a light and reporting back what lies out there. The most beautiful things for them are the wholly new objects that they discover (the phrase 'bright shiny objects' has been i
Scott Alexander's Mistakes, Dan Luu's Major errors on this blog (and their corrections), Gwern's My Mistakes (last updated 11 years ago), and Nintil's Mistakes (h/t @Rasool) are the only online writers I know of who maintain a dedicated, centralized page solely for cataloging their errors, which I admire. Probably not coincidentally they're also among the thinkers I respect the most for repeatedly empirically grounding their reasoning. Some orgs do this too, like 80K's Our mistakes, CEA's Mistakes we've made, and GiveWell's Our mistakes.
While I prefer dedicated centralized pages like those to one-off writeups for long content benefit reasons, one-off definitely beats none (myself included). In that regard I appreciate essays like Holden Karnofsky's Some Key Ways in Which I've Changed My Mind Over the Last Several Years (2016), Denise Melchin's My mistakes on the path to impact (2020), Zach Groff's Things I've Changed My Mind on This Year (2017), Michael Dickens' things I've changed my mind on, and this 2013 LW repository for "major, life-altering mistakes that you or others have made", as well as by orgs like HLI's Learning from our mistakes.
In this vein I'm also sad to see m...
What fraction of economically-valuable cognitive labor is already being automated today? How has that changed over time, especially recently?
I notice I'm confused about these ostensibly extremely basic questions, which arose in reading Open Phil's old CCF-takeoff report, whose main metric is "time from AI that could readily[2] automate 20% of cognitive tasks to AI that could readily automate 100% of cognitive tasks". A cursory search of Epoch's data, Metaculus, and this forum didn't turn up anything, but I didn't spend much time at all doing so.
I was originally motivated by wanting to empirically understand recursive AI self-improvement better, which led to me stumbling upon the CAIS paper Examples of AI Improving AI, but I don't have any sense whatsoever of how the paper's 39 examples as of Oct-2023 translate to OP's main metric even after constraining "cognitive tasks" in its operational definition to just AI R&D.
I did find this 2018 survey of expert opinion
...A survey was administered to attendees of three AI conferences during the summer of 2018 (ICML, IJCAI and the HLAI conference). The survey included questions for estimating AI capabilities over the next d
I chose to study physics in undergrad because I wanted to "understand the universe" and naively thought string theory was the logically correct endpoint of this pursuit, and was only saved from that fate by not being smart enough to get into a good grad school. Since then I've come to conclude that string theory is probably a dead end, albeit an astonishingly alluring one for a particular type of person. In that regard I find anecdotes like the following by Ron Maimon on Physics SE interesting — the reason string theorists believe isn’t the same as what they tell people, so it’s better to ask for their conversion stories:
...I think that it is better to ask for a compelling argument that the physics of gravity requires a string theory completion, rather than a mathematical proof, which would be full of implicit assumptions anyway. The arguments people give in the literature are not the same as the personal reasons that they believe the theory, they are usually just stories made up to sound persuasive to students or to the general public. They fall apart under scrutiny. The real reasons take the form of a conversion story, and are much more subjective, and much less persuasive to everyo
In pure math, mathematicians seek "morality", which sounds similar to Ron's string theory conversion stories above. Eugenia Cheng's Mathematics, morally argues:
...I claim that although proof is what supposedly establishes the undeniable truth of a piece of mathematics, proof doesn’t actually convince mathematicians of that truth. And something else does.
... formal mathematical proofs may be wonderfully watertight, but they are impossible to understand. Which is why we don’t write whole formal mathematical proofs. ... Actually, when we write proofs what we have to do is convince the community that it could be turned into a formal proof. It is a highly sociological process, like appearing before a jury of twelve good men-and-true. The court, ultimately, cannot actually know if the accused actually ‘did it’ but that’s not the point; the point is to convince the jury. Like verdicts in court, our ‘sociological proofs’ can turn out to be wrong—errors are regularly found in published proofs that have been generally accepted as true. So much for mathematical proof being the source of our certainty. Mathematical proof in practice is certainly fallible.
But this isn’t the only
I used to consider it a mystery that math was so unreasonably effective in the natural sciences, but changed my mind after reading this essay by Eric S. Raymond (who's here on the forum, hi and thanks Eric), in particular this part, which is as good a question dissolution as any I've seen:
The relationship between mathematical models and phenomenal prediction is complicated, not just in practice but in principle. Much more complicated because, as we now know, there are mutually exclusive ways to axiomatize mathematics! It can be diagrammed as follows (thanks to Jesse Perry for supplying the original of this chart):
(it's a shame this chart isn't rendering properly for some reason, since without it the rest of Eric's quote is ~incomprehensible)
...The key transactions for our purposes are C and D -- the translations between a predictive model and a mathematical formalism. What mystified Einstein is how often D leads to new insights.
We begin to get some handle on the problem if we phrase it more precisely; that is, "Why does a good choice of C so often yield new knowledge via D?"
The simplest answer is to invert the question and treat it as a definition. A "good choi
This remark at 16:10 by Dwarkesh Patel on his most recent podcast interview AMA: Career Advice Given AGI, How I Research ft. Sholto & Trenton was pretty funny:
... big guests just don't really matter that much if you just look at what are the most popular episodes, or what in the long run helps a podcast grow. By far my most popular guest is Sarah Paine, and she, before I interviewed her, was just a scholar who was not publicly well-known at all, and I just found her books quite interesting—so my most popular guests are Sarah Paine and then Sarah Paine, Sarah Paine, Sarah Paine because I have
electric chairs(?)a lecture series with her. And by the way, from a viewer-a-minute adjusted basis, I host the Sarah Paine podcast where I occasionally talk about AI.
(After Sarah Paine comes geneticist David Reich, then Satya Nadella and Mark Zuckerberg, "then [Sholto & Trenton] or Leopold (Aschenbrenner) or something, then you get to the lab CEOs or something")
You can see it as an example of 'alpha' vs 'beta'. When someone asks me about the value of someone as a guest, I tend to ask: "do they have anything new to say? didn't they just do a big interview last year?" and if they don't but they're big, "can you ask them good questions that get them out of their 'book'?" Big guests are not necessarily as valuable as they may seem because they are highly-exposed, which means both that (1) they have probably said everything they will said before and there is no 'news' or novelty, and (2) they are message-disciplined and careful to "talk their book". (In this analogy, "alpha" represents undiscovered or neglected interview topics which can be extracted mostly just by finding it and then asking the obvious question, usually by interviewing new people; "beta" represents doing standard interview topics/people, but much more so - harder, faster, better - and getting new stuff that way.)
Lex Fridman podcasts are an example of this: he often hosts very big guests like Mark Zuckerberg, but nevertheless, I will sit down and skim through the transcript of 2-4 hours of content, and find nothing even worth excerpting for my notes. Fridman notoriously does n...
Unbundling Tools for Thought is an essay by Fernando Borretti I found via Gwern's comment which immediately resonated with me (emphasis mine):
...I’ve written something like six or seven personal wikis over the past decade. It’s actually an incredibly advanced form of procrastination1. At this point I’ve tried every possible design choice.
Lifecycle: I’ve built a few compiler-style wikis: plain-text files in a
git
repo statically compiled to HTML. I’ve built a couple using live servers with server-side rendering. The latest one is an API server with a React frontend.Storage: I started with plain text files in a git repo, then moved to an SQLite database with a simple schema. The latest version is an avant-garde object-oriented hypermedia database with bidirectional links implemented on top of SQLite.
Markup: I used Markdown here and there. Then I built my own TeX-inspired markup language. Then I tried XML, with mixed results. The latest version uses a WYSIWYG editor made with ProseMirror.
And yet I don’t use them. Why? Building them was fun, sure, but there must be utility to a personal database.
At first I thought the problem was friction: the higher the activation energy to u
I currently work in policy research, which feels very different from my intrinsic aesthetic inclination, in a way that I think Tanner Greer captures well in The Silicon Valley Canon: On the Paıdeía of the American Tech Elite:
...I often draw a distinction between the political elites of Washington DC and the industrial elites of Silicon Valley with a joke: in San Francisco reading books, and talking about what you have read, is a matter of high prestige. Not so in Washington DC. In Washington people never read books—they just write them.
To write a book, of course, one must read a good few. But the distinction I drive at is quite real. In Washington, the man of ideas is a wonk. The wonk is not a generalist. The ideal wonk knows more about his or her chosen topic than you ever will. She can comment on every line of a select arms limitation treaty, recite all Chinese human rights violations that occurred in the year 2023, or explain to you the exact implications of the new residential clean energy tax credit—but never all at once. ...
Washington intellectuals are masters of small mountains. Some of their peaks are more difficult to summit than others. Many smaller slopes are nonetheless ja
I enjoyed Brian Potter's Energy infrastructure cheat sheet tables over at Construction Physics, it's a great fact post. Here are some of Brian's tables — if they whet your appetite, do check out his full essay.
Energy quantities:
Units and quantities | Kilowatt-hours | Megawatt-hours | Gigawatt-hours |
---|---|---|---|
1 British Thermal Unit (BTU) | 0.000293 | ||
iPhone 14 battery | 0.012700 | ||
1 pound of a Tesla battery pack | 0.1 | ||
1 cubic foot of natural gas | 0.3 | ||
2000 calories of food | 2.3 | ||
1 pound of coal | 2.95 | ||
1 gallon of milk (calorie value) | 3.0 | ||
1 gallon of gas | 33.7 | ||
Tesla Model 3 standard battery pack | 57.5 | ||
Typical ICE car gas tank (15 gallons) | 506 | ||
1 ton of TNT | 1,162 | ||
1 barrel of oil | 1,700 | ||
1 ton of oil | 11,629 | 12 | |
Tanker truck full of gasoline (9300 gallons) | 313,410 | 313 | |
LNG carrier (180,000 cubic meters) | 1,125,214,740 | 1,125,215 | 1,125 |
1 million tons of TNT (1 megaton) | 1,162,223,152 | 1,162,223 | 1,162 |
Oil supertanker (2 million barrels) | 3,400,000,000 | 3,400,000 | 3,400 |
It's amazing that a Tesla Model 3's standard battery pack has an OOM less energy capacity than a typical 15-gallon ICE car gas tank, and is probably heavier to...
Pilish is a constrained writing style where the number of letters in consecutive words match the digits of pi. The canonical intro-to-Pilish sentence is "How I need a drink, alcoholic of course, after the heavy lectures involving quantum mechanics!"; my favorite Pilish poetry is Mike Keith's Near a Raven, a retelling of Edgar Allan Poe's "The Raven" stretching to 740 digits of pi (nowhere near Keith's longest, that would be the 10,000-word world record-setting Not a Wake), which begins delightfully like so:
...Poe, E.
Near a RavenMidnights
From Brian Potter's Construction Physics newsletter I learned about Taara, framed as "Google's answer to Starlink" re: remote internet access, using ground-based optical communication instead of satellites ("fiber optics without the fibers"; Taara calls them "light bridges"). I found this surprising. Even more surprisingly, Taara isn't just a pilot but a moneymaking endeavor if this Wired passage is true:
...Taara is now a commercial operation, working in more than a dozen countries. One of its successes came in crossing the Congo River. On one side was Brazza
Peter Watts' 2006 novel Blindsight has this passage on what it's like to be a "scrambler", superintelligent yet nonsentient (in fact superintelligent because it's unencumbered by sentience), which I read a ~decade ago and found unforgettable:
...Imagine you're a scrambler.
Imagine you have intellect but no insight, agendas but no awareness. Your circuitry hums with strategies for survival and persistence, flexible, intelligent, even technological—but no other circuitry monitors it. You can think of anything, yet are conscious of nothing.
You can't imagine such a
Ravi Vakil's advice for potential PhD students includes this bit on "tendrils to be backfilled" that's stuck with me ever since as a metaphor for deepening understanding over time:
...Here's a phenomenon I was surprised to find: you'll go to talks, and hear various words, whose definitions you're not so sure about. At some point you'll be able to make a sentence using those words; you won't know what the words mean, but you'll know the sentence is correct. You'll also be able to ask a question using those words. You still won't know what the words mean, but yo
Out of curiosity — how relevant is Holden's 2021 PASTA definition of TAI still to the discourse and work on TAI, aside from maybe being used by Open Phil (not actually sure that's the case)? Any pointers to further reading, say here or on AF etc?
...AI systems that can essentially automate all of the human activities needed to speed up scientific and technological advancement. I will call this sort of technology Process for Automating Scientific and Technological Advancement, or PASTA.3 (I mean PASTA to refer to either a single system or a collection of system
When I first read Hannu Rajaniemi's Quantum Thief trilogy c. 2015 I had two reactions: delight that this was the most my-ingroup-targeted series I had ever read, and a sinking feeling that ~nobody else would really get it, not just the critics but likely also most fans, many of whom would round his carefully-chosen references off to technobabble. So I was overjoyed to recently find Gwern's review of it, which Hannu affirms "perfectly nails the emotional core of the trilogy and, true to form, spots a number of easter eggs I thought no one would ever find", ...
I enjoyed these passages from Henrik Karlsson's essay Cultivating a state of mind where new ideas are born on the introspections of Alexander Grothendieck, arguably the deepest mathematical thinker of the 20th century.
...In June 1983, Alexander Grothendieck sits down to write the preface to a mathematical manuscript called Pursuing Stacks. He is concerned by what he sees as a tacit disdain for the more “feminine side” of mathematics (which is related to what I’m calling the solitary creative state) in favor of the “hammer and chisel” of the finished theo
Scott's The Colors Of Her Coat is the best writing I've read by him in a long while. Quoting this part in particular as a self-reminder and bulwark against the faux-sophisticated world-weariness I sometimes slip into:
...Chesterton’s answer to the semantic apocalypse is to will yourself out of it. If you can’t enjoy My Neighbor Totoro after seeing too many Ghiblified photos, that’s a skill issue. Keep watching sunsets until each one becomes as beautiful as the first...
If you insist that anything too common, anything come by too cheaply, must be bor
I find both the views below compellingly argued in the abstract, despite being diametrically opposed, and I wonder which one will turn out to be the case and how I could tell, or alternatively if I were betting on one view over another, how should I crystallise the bet(s).
One is exemplified by what Jason Crawford wrote here:
...The acceleration of material progress has always concerned critics who fear that we will fail to keep up with the pace of change. Alvin Toffler, in a 1965 essay that coined the term “future shock,” wrote:
I believe that most human beings
Some ongoing efforts to mechanize mathematical taste, described by Adam Marblestone in Automating Math:
...Yoshua Bengio, one of the “fathers” of deep learning, thinks we might be able to use information theory to capture something about what makes a mathematical conjecture “interesting.” Part of the idea is that such conjectures compress large amounts of information about the body of mathematical knowledge into a small number of short, compact statements. If AI could optimize for some notion of “explanatory power” (roughly, how vast a range of disparate knowl
How to quantify how much impact being smarter makes? This is too big a question and there are many more interesting ways to answer it than the following, but computer chess is interesting in this context because it lets you quantify compute vs win probability, which seems like one way to narrowly proxy the original question. Laskos did an interesting test in 2013 with Houdini 3 by playing a large number of games on 2x nodes vs 1x nodes per move level and computing p(win | "100% smarter"). The win probability gain above chance i.e. 50% drops from +35.1% in ...
Just reread Scott Aaronson's We Are the God of the Gaps (a little poem) from 2022:
...When the machines outperform us on every goal for which performance can be quantified,
When the machines outpredict us on all events whose probabilities are meaningful,
When they not only prove better theorems and build better bridges, but write better Shakespeare than Shakespeare and better Beatles than the Beatles,
All that will be left to us is the ill-defined and unquantifiable,
The interstices of Knightian uncertainty in the world,
The utility functions that no one has yet wr
This remark at 16:10 by Dwarkesh Patel on his most recent podcast interview AMA: Career Advice Given AGI, How I Research ft. Sholto & Trenton was pretty funny:
(After Sarah Paine comes geneticist David Reich, then Satya Nadella and Mark Zuckerberg, "then [Sholto & Trenton] or Leopold (Aschenbrenner) or something, then you get to the lab CEOs or something")
This seems to underrate the value of distribution. I suspect another factor to take into account is the degree of audience overlap. Like there's a lot of value in booking a guest who has been on a bunch of podcasts, so long as your particular audience isn't likely to have been exposed to them.