Linkpost for "A Generalist Agent"
Abstract:
"Inspired by progress in large-scale language modeling, we apply a similar approach towards building a single generalist agent beyond the realm of text outputs. The agent, which we refer to as Gato, works as a multi-modal, multi-task, multi-embodiment generalist policy. The same network with the same weights can play Atari, caption images, chat, stack blocks with a real robot arm and much more, deciding based on its context whether to output text, joint torques, button presses, or other tokens. In this report we describe the model and the data, and document the current capabilities of Gato"
My main takeaway from Gato: If we can build specialized AI agents for 100s/1000s of tasks, it's now pretty straightforward to make a general agent that can do it all in a single model. Just tokenize data from all the tasks and feed into a transformer.
The fact that adding new tasks doesn't diminuish performance on previous tasks is highly non trivial!
It may be that there is a lot of room in the embedding space to store them. The wild thing is that nothing (apart few hardware iterations) stop us to increase the embedding space if really needed.