This came up as a tangent from this question, which is itself a tangent from a discussion on The Hidden Complexity of Wishes.
Suppose we have a perfect cubical box of length 1 meter containing exactly 1 mol of argon gas at room temperature.
- At t=0, the gas is initialized with random positions and velocities drawn from the Maxwell-Boltzmann distribution.
- Right after t=0 we perturb one of the particles by 1 angstrom in a random direction to get the state .
- All collisions are perfectly elastic, so there is no viscosity [edit, this is wrong; even ideal gases have viscosity] and energy is conserved.
- For each possible perturbation, we run physics forward for 20 seconds and measure whether there are more gas molecules in the left side or right side of the box at t=20 seconds (the number on each side will be extremely close to equal, but differ slightly). Do more than 51% of the possible perturbations result in the same answer? That is, if is the predicate "more gas molecules on the left at t=20", is ?
This is equivalent to asking if an omniscient forecaster who knows the position and velocity of all atoms at t=0 except for 1 angstrom of uncertainty in 1 atom can know with >51% confidence which side has more gas molecules at t=20.
I think the answer is no, because multiple billiard balls is a textbook example of a chaotic system that maximizes entropy quickly, and there's no reason information should be preserved for 20 seconds. This is enough time for each atom to collide with others millions of times, and even sound waves will travel thousands of meters and have lots of time to dissipate.
@habryka thinks the answer is yes and the forecaster could get more than 99.999% accuracy, because with such a large number of molecules, there should be some structure that remains predictable.
Who is right?
Minor nitpicks: -I read "1 angstrom of uncertainty in 1 atom" as the location is normally distributed with mean <center> and SD 1 angstrom, or as uniformly distributed in solid sphere of radius 1 angstrom. Taken literally, though, "perturb one of the particles by 1 angstrom in a random direction" is distributed on the surface of the sphere (particle is known to be exactly 1 angstrom from <center>). -The answer will absolutely depend on the temperature. (in a neighborhood of absolute zero, the final positions of the gas particles are very close to the initial positions.) -The answer also might depend on the exact starting configuration. While I think most configurations would end up ~50/50 chance after 20 seconds, there are definitely configurations that would be stably strongly on one side.
Nothing conclusive below, but things that might help: -Back-of-envelope calculation said the single uncertain particle has ~(10 million * sqrt(temp in K)) collisions /sec. -If I'm using MSD right (big if!) then at STP, particles move from initial position only by about 5 cm in 20 seconds (cover massive distance, but the brownian motion cancels in expectation.) -I think that at standard temp, this would be at roughly 1/50 standard pressure?