Nobody designing a financial system today would invent credit cards. The Western world uses credit cards because replacing legacy systems is expensive. China doesn't use credit cards. They skipped straight from cash to WeChat Pay. Skipping straight to the newest technology when you're playing catch-up is called leapfrogging.
A world-class military takes decades to create. The United States' oldest active aircraft carrier was commissioned in 1975. For reference, the Microsoft Windows operating system was released in 1985. The backbone of NATO's armed forces was designed for a world before autonomous drones and machine learning.
The United States dominates at modern warfare. Developed in WWII, modern warfare combines tanks, aircraft, artillery and mechanized[1] infantry to advance faster than the enemy can coordinate a response.
Modern warfare is expensive—and not just because of all that heavy machinery. Modern warfare delegates important decisions to the smallest unit capable of making them. Officers must be smart and they must be trained. Training officers to fight a modern war is hard. It takes a long time. There's constant turnover. It's a human resources nightmare. You can't just throw money at the problem.
Soon it will be possible to throw machine learning at the problem instead.
At the center of [China's] public discussions is a new and little-understood concept called “intelligentization (智能化),” which represents a new goal for the PLA’s progress in modernization…. Chinese theorists’ discussions about intelligentization overwhelmingly call for highly centralized decision-making structures. These strategists want operational commanders advised by advanced algorithms to perfectly direct intelligent swarms of autonomous battle systems to achieve campaign objectives. Chinese theorists believe this approach will consolidate command responsibility onto a few generals who can remain safely away from the frontlines of the battlefield, which is antithetical to the modern concept of mission command.
―Schrodinger’s Military? Challenges for China’s Military Modernization Ambitions
AI-centric postmodern warfare has advantages over human-centric modern warfare.
- Human communication is a bottleneck for large organizations. Computer command systems can coordinate perfectly and instantly. Human beings cannot.
- It's easier to mass-produce computers than human specialists.
- AI-centric warfare is on the winning side of a ratchet. AI capabilities advance while human capabilities remain constrained by biology. Whenever an AI system gets better than human beings at a specific task it remains that way permanently.
Most importantly, AI-centric command is the only viable method for commanding swarms of unmanned aerial vehicles.
Unmanned aerial vehicles (UAVs) are smaller and cheaper than piloted aircraft. A UAV can be remote controlled or it can be autonomous. Remote controlling a UAV takes a lot of bandwidth because the UAV must send back its sensory information to mission command. This works fine when you're controlling a handful of Predator drones. Remote control will not work when you're controlling a swarm of 10,000 small UAVs against a peer adversary. Direct communication is fragile and there isn't enough bandwidth in the radio spectrum for indirect transmission. UAVs swarms must be autonomous.
The disadvantage of postmodern warfare is that centralized computer-controlled systems are fragile in a different way. If critical systems get compromised (or just fail in an unexpected way) then the entire war machine breaks. I think the advantages are worth the risks. It's not like our critical infrastructure isn't already vulnerable to cyberattack. Moreover, distributed fault-tolerant architectures can help mitigate the risks.
Western military theorists claim that today's autonomous systems are not ready to command the battlefield. This is true but it's also beside the point. China is building its military with forward compatability in mind. Software advances faster than hardware. By investing in autonomous battle systems today, China can continuously update to the newest AI as machine learning advances.
In this context, "mechanized infantry" refers to wheeled [edit: and tracked] vehicles, not power armor and battlemechs. ↩︎
I think you're grossly underestimating the following effects/issues:
1. How do multiple redundant commanders ensure that they reliably have the same information, much less in a battlefield environment? Our best efforts still ended up with Bysantine faults on the space shuttle, and that was carefully designed wired connections... (see also Murphy Was an Optimist, which describes a 4-way split due to a failed diode).
2. How do commanders broadcast information in a manner that isn't also broadcasting their location to enemies? (Honestly, the least important of these issues, and I was tempted not to include this lest you respond to this point and only this point.)
3. If many vehicles are constantly recieving enough information to make higher level decisions, how do you prevent a compromised vehicle from also leaking said state to the enemy? Note the number of known attacks against TPMs, and note that homomorphic encryption is many orders of magnitude away from being feasible here. (And worse, requires a serial speedup in many cases to be feasible.)
4. If many vehicles have the deterministic agent algorithm, how do you prevent a compromised vehicle from leaking said algorithm in a manner the enemy can use for adversarial attacks of various sorts? Same notes as 3.
5. "Each agent must query the layer below it to function, exporting these subtasks to an agent specialized in performing them." What you're describing runs into exponential blowup in the number of queries in some cases. (For a simple example, note that sliding-block puzzles are PSPACE-complete, and consider what happens when each bottom agent is a single block that has to be feasibility-queried as to if it can move.) Normally, I'd just say "sure, but you're unlikely to run into those cases", however combat is rather necessarily adversarial.
The OpenAI 5 DOTA2 bot beating professionals received a lot of press. A random team who got ten wins against said bot, not so much. Beware glass jaws.
> in a battlespace where everyone on the enemy side has computer controlled aim, flying drones without armor will likely only survive for mere seconds of exposure.
In a battlespace where everyone on the enemy side has computer controlled aim, flying drones with armor will likely only survive for mere seconds of exposure. It may be better to have smaller drones, or more maneuverable drones, or quieter drones, or simply more drones, over more armored drones. (Or it may not. The point is it's not as clearcut as you seem to make it out to be.)
(You may wish to look at discussions of battleships, and particularly battleship armor, versus missiles. And battleships are far less weight-constrained than fliers...)