we’ll be releasing Claude 3.5 Haiku and Claude 3.5 Opus later this year.
They made a mini model card. Notably:
The UK AISI also conducted pre-deployment testing of a near-final model, and shared their results with the US AI Safety Institute . . . . Additionally, METR did an initial exploration of the model’s autonomy-relevant capabilities.
It seems that UK AISI only got maximally shallow access, since Anthropic would have said if not, and in particular the model card mentions "internal research techniques to acquire non-refusal model responses" as internal. This is better than nothing, but it would be unsurprising if an evaluator with shallow access is unable to elicit dangerous capabilities but users—with much more time and with access to future elicitation techniques—ultimately are. Recall that DeepMind, in contrast, gave "external testing groups . . . . the ability to turn down or turn off safety filters."
Anthropic CEO Dario Amodei gave Dustin Moskovitz the impression that Anthropic committed "to not meaningfully advance the frontier with a launch." (Plus Gwern, and this was definitely Anthropic's vibe around 2022,[1] although not a hard public commitment.) Perhaps Anthropic does not consider itself bound by this, which might be reasonable — it's quite disappointing that Anthropic hasn't clarified its commitments, particularly after the confusion on this topic around the Claude 3 launch.
It looks like the example you gave pretty explicitly is using “compute” rather than “effective compute”. The point of having the “effective” part is to take into account non compute progress, such as using more optimal N/D ratios. I think in your example, the first two models would be at the same effective compute level, based on us predicting the same performance.
That said, I haven’t seen any detailed descriptions of how Anthropic is actually measuring/calculating effective compute (iirc they link to a couple papers and the main theme is that you can use training CE loss as a predictor).