I've just finished reading through Functional Decision Theory: A New Theory of Rationality, but there are some rather basic questions that are left unanswered since it focused on comparing it to Casual Decision Theory and Evidential Decision Theory:
- How is Functional Decision Theory different from Timeless Decision Theory? All I can gather is that FDT intervenes on the mathematical function, rather than on the agent. What problems does it solve that TDT can't? (Apparently it solves Mechanical Blackmail with an imperfect predictor and so it should also be able to solve Counterfactual Mugging?)
- How is it different from Updateless decision theory? What's the simplest problem in which they give different results?
- Functional Decision Theory seems to require counterpossibilities, where we imagine that a function output a result that is different from what it outputs. It further says that this is a problem that isn't yet solved. What approaches have been tried so far? Further, what are some key problems within this space?
Nate says: "The main datapoint that Rob left out: one reason we don't call it UDT (or cite Wei Dai much) is that Wei Dai doesn't endorse FDT's focus on causal-graph-style counterpossible reasoning; IIRC he's holding out for an approach to counterpossible reasoning that falls out of evidential-style conditioning on a logically uncertain distribution. (FWIW I tried to make the formalization we chose in the paper general enough to technically include that possibility, though Wei and I disagree here and that's definitely not where the paper put its emphasis. I don't want to put words in Wei Dai's mouth, but IIRC, this is also a reason Wei Dai declined to be listed as a co-author.)"