Another month, another rationality quotes thread. The rules are:
- Please post all quotes separately, so that they can be upvoted or downvoted separately. (If they are strongly related, reply to your own comments. If strongly ordered, then go ahead and post them together.)
- Do not quote yourself.
- Do not quote from Less Wrong itself, HPMoR, Eliezer Yudkowsky, or Robin Hanson. If you'd like to revive an old quote from one of those sources, please do so here.
- No more than 5 quotes per person per monthly thread, please.
- Provide sufficient information (URL, title, date, page number, etc.) to enable a reader to find the place where you read the quote, or its original source if available. Do not quote with only a name.
I think percolation theory concerns itself with a different question: is there a path from starting point to the "edge" of the graph, as the size of the graph is taken to infinity. It is easy to see that it is possible to hit infinity while infecting an arbitrarily small fraction of the population.
But there are crazy universality and duality results for random graphs, so there's probably some way to map an epidemic model to a percolation model without losing anything important?
The main question of percolation theory, whether there exists a path from a fixed origin to the "edge" of the graph, is equivalently a statement about the size of the largest connected cluster in a random graph. This can be intuitively seen as the statement: 'If there is no path to the edge, then the origin (and any place that you can reach from the origin, traveling along paths) must be surrounded by a non-crossable boundary'. So without such a path your origin lies in an isolated island. By the randomness of the graph this statement applies to ... (read more)