Specifically, let's say you are handed a Boolean 3-sat problem, and you finally managed to finish solving the 3-SAT instance you are given by a superpolynomially large algorithm.
Now, you are given another Boolean 3-SAT problem. Can you amortize the complexity costs of 3-SAT problems, or does each 3-SAT problem instance require you to pay the full complexity cost of the algorithm you run?
To give an analogy for the question I'm asking, I'm trying to determine whether computationally hard problems are more CapEx dominated, and the OpEx of running each particular instance of 3-sat is low, making it more like an investment, or perhaps buying things, or is it more like a high OpEx, where each instance of a 3-SAT problem remains just as expensive and can't be amortized, much like renting something.
Equivalently, the question is how much you are able to amortize the costs of solving similar problems, like 3-SAT for NP-complete problems or True Quantified Boolean Formulas for PSPACE-complete problems.
Challenge: If you are able to show that you can reduce computational complexity costs via amortizing the instances of a problem, how far up the complexity hierarchy does this go? How complex does a problem need to be before you can't amortize the costs of a computationally complex problem anymore?
In general to solve an NP complete problem like 3-SAT, you have to spend compute or storage to solve it.
Suppose you solve one 3-SAT problem. If you don't write down the solution and steps along the way, then you have no way to get the benefit of the work for the next problem. But if you do store the results of the intermediate steps, then you need to store data that's also polynomial in size.
In practice often you can do much better than that because the problems you're solving may share certain data or characteristics that lead to shortcuts, but in the general case you have to pay the cost every time you need to solve an NP complete problem.
So it means that you can't gain cost advantages in general by solving other same or similarly computationally complex problems?