Summary: the problem with Pascal's Mugging arguments is that, intuitively, some probabilities are just too small to care about. There might be a principled reason for ignoring some probabilities, namely that they violate an implicit assumption behind expected utility theory. This suggests a possible approach for formally defining a "probability small enough to ignore", though there's still a bit of arbitrariness in it.
Do you know, offhand, if Baysian networks have been extended with complex numbers as probabilities, or (reaching here) if you can do belief propagation by passing around qubits instead of bits? I'm not sure what I mean by either of these thing but I'm throwing keywords out there to see if anything sticks.
Yes they have, but there is no single generalization. I am not even sure what conditioning should mean.
Scott A is a better guy to ask.