Open problems are clearly defined problems1 that have not been solved. In older fields, such as Mathematics, the list is rather intimidating. Rationality, on the other, seems to have no list.
While we have all of us here together to crunch on problems, let's shoot higher than trying to think of solutions and then finding problems that match the solution. What things are unsolved questions? Is it reasonable to assume those questions have concrete, absolute answers?
The catch is that these problems cannot be inherently fuzzy problems. "How do I become less wrong?" is not a problem that can be clearly defined. As such, it does not have a concrete, absolute answer. Does Rationality have a set of problems that can be clearly defined? If not, how do we work toward getting our problems clearly defined?
See also: Open problems at LW:Wiki
1: "Clearly defined" essentially means a formal, unambiguous definition. "Solving" such a problem would constitute a formal proof.
"Best": most accurate - i.e. when Occam's razor says A is a more likely hypothesis than B, then that is actually true.
Then I would go for Turing machines, Lambda calculus, or similar. These languages are very simple, and can easily handle input and output.
Even simpler languages, like cellular automaton No.110 or Combinatory Logic might be better, but those are quite difficult to get to handle input and output correctly.
The reason simple languages, or universal machines, should be better, is that the upper bound for error in estimating probabilities is 2 to the power of the complexity of the program simulating one language in another, according to algorithmic information t... (read more)