At some point soon, I'm going to attempt to steelman the position of those who reject the AI risk thesis, to see if it can be made solid. Here, I'm just asking if people can link to the most convincing arguments they've found against AI risk.
EDIT: Thanks for all the contribution! Keep them coming...
So, to sum up, your plan is to create an arbitrarily safe VM, and use it to run brain-emulation-style denovo AIs patterned on human babies (presumably with additional infrastructure to emulate the hard-coded changes that occur in the brain during development to adulthood: adult humans are not babies + education). You then want to raise many, many iterations of these things under different conditions to try to produce morally superior specimens, then turn those AIs loose and let them self modify to godhood.
Is that accurate? (Seriously, let me know if I'm misrepresenting your position).
A few problems immediately come to mind. We'll set aside the moral horror of what you just described as a necessary evil to avert the apocalypse, for the time being.
More practically, I think you're being racist against weird mathy programs.
For starters, I think weird mathy programs will be a good deal easier to develop than digital people. Human beings are not just general optimizers. We have modules that function roughly like one, which we use under some limited circumstances, but anyone who's ever struggled with procrastination or put their keys in the refrigerator knows that your goal-oriented systems are entangled with a huge number of cheap heuristics at various levels, many of which are not remotely goal-oriented.
All of this stuff is deeply tangled up with what we think of as the human 'utility function,' because evolution has no incentive to design a clean separation between planning and values. Replicating all of that accurately enough to get something that thinks and behaves like a person is likely much harder than making a weird mathy program that's good at modelling the world and coming up with plans.
There's also the point that there really isn't a good way to make a brain emulation smarter. Weird, mathy programs - even ones that use neural networks as subroutines - often have obvious avenues to making them smarter, and many can scale smoothly with processing resources. Brain emulations are much harder to bootstrap, and it'd be very difficult to preserve their behavior through the transition.
My best guess is, they'd probably go nuts and end up as an eldritch horror. And if not, they're still going to get curb stomped by the first weird mathy program to come along, because they're saddled with all of our human imperfections and unnecessary complexity. The upshot of all of this is that they don't serve the purpose of protecting us from future UFAIs.
Finally, the process you described isn't really something you can start on (aside from the VM angle) until you already have human level AGIs, and a deep and total understanding of all of the operation of the human brain. Then, while you're setting up your crazy AI concentration camp and burning tens of thousands of man-years of compute time searching for AI Buddha, some bright spark in a basement with a GPU cluster has the much easier task of just cludging together something smart enough to recursively self-improve. You're in a race with a bunch of people trying to solve a much easier problem, and (unlike MIRI) you don't have decades of lead time to get a head start on the problem. Your large-scale evolutionary process would take much, much too much time and money to actually save the world.
In short, I think it's a really bad idea. Although now that I understand what you're getting at, it's less obviously silly than what I originally thought you were proposing. I apologize.
No. I said:
I used brain emulations as analogy to help aid your understanding. Because unless you have deep knowledge of machine learning and computational neuroscience, there are huge inferential distances to cross.
Yes we are. I have made a d... (read more)